| 研究生: |
曾展晧 Tseng, Chan-Hao |
|---|---|
| 論文名稱: |
以貴金屬奈米粒子-氧化鋅奈米柱複合光觸媒分解甲基橙之研究 Photodegradation of methyl orange using Noble metal loaded ZnO nanorods |
| 指導教授: |
吳季珍
Wu, Jin-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 氧化鋅 、光化學還原法 、濺鍍法 、光催化 、貴金屬 |
| 外文關鍵詞: | noble metal, Sputtering, photocatalysis, Photoreduction, ZnO |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分別利用光化學還原法(photoreduction method)與濺鍍法(sputtering method)於氧化鋅奈米柱上成長貴金屬,形成金屬-氧化鋅奈米柱光觸媒複合材料,並藉由光分解甲基橙之光催化實驗,來探討沉積不同貴金屬於氧化鋅奈米柱上,對光催化活性之影響。在光化學還原法中,藉由控制含有貴重金屬溶液之濃度與光照時間,可成功調節貴重金屬之粒徑大小與分佈密度,並得知金屬奈米粒子大多分布於氧化鋅奈米柱之頂部。由XRD與TEM結構分析得知,所還原出之Ag與Au奈米粒子具有單晶之cubic 結構。在濺鍍法中,藉由控制濺鍍電流大小與濺鍍時間可成長不同密度與粒子大小之金屬粒子(Au與Pt)於氧化鋅奈米柱上,其中Au奈米粒子是分佈於氧化鋅奈米柱之頂部,此與光化學還原法之情況類似;然而,Pt奈米粒子是包覆於整個氧化鋅奈米柱上。透過XRD分析得知Au與Pt奈米粒子也具有cubic結構。
在光分解甲基橙之光催化實驗中,發現沉積Ag與Au奈米粒子時,在其適當之粒徑大小與分布密度於氧化鋅奈米柱的條件下,具有最佳的光催化效率。但Pt金屬奈米粒子卻無促進光催化效率之結果。此符合文獻中所提及Ag或Au奈米粒子具有儲存光電子於其中之能力,而降低半導體內所產生的光電子電洞對再結合機率的結果(意即增加電子電洞對之分離效率);然而,Pt金屬粒子卻無此能力。另外,藉由催化反應動力之分析,顯示本實驗異相光催化反應是符合一階反應動力模式。
Nobel metal nanoparticles have been formed on the surface of ZnO nanorods via photoreduction method and sputtering method. Using photoreduction method, the metal particles are mainly formed on the top of the nanorods. The sizes and densities of the metal particles can be controlled by deposition times and the concentrations of the noble metal precursor solutions. Structure analyses reveal that the Ag and Au nanoparticles possess single crystal cubic structure. In the case of sputtering method, the sizes and densities of the Au and Pt particles can be controlled by sputtering current and deposition times. Au nanoparticles are formed on the top of the nanorods whereas Pt nanoparticles are deposited on the whole surface of the nanorods. XRD analyses show that they both possess cubic crystal structures. The nano-metal/ZnO nanorods composites were employed to investigate the effects of the metal nanoparticles on the photocatalytic activities for methyl orange (MO) degradation. It reveals that photocatalytic activities of the nano-metal/ZnO nanorod composites for MO degradation depend on the size and the densities of the metal particles. The MO degradation is enhanced using Ag/ZnO nanorod and Au/ZnO nanorod composites in comparison with the bare ZnO nanorods. However, the enhancement is absent in the case of Pt/ZnO nanorods composites. The results suggest that the Ag and Au nanoparticles on the ZnO nanorods enhance the charge separation of the excited electron-hole pairs in the ZnO nanorods. In addition, kinetic data for MO degradation are well fit to the 1st-order kinetic model.
[1]張立德,牟季美 奈米材料和奈米結構 滄海書局
[2]Richard Feynman J.Micro. Syst. 1(1) 60-66 1992.
[3]曹茂盛 奈米材料導論 學富文化事業有限公司
[4]Whitesides, G. M., Love, J. C., 張明哲翻譯,科學人, 14, 85, 2003.
[5]http://chem.ch.huji.ac.il/~porath/NST2
[6]Bockman, T. M and Kochi, J. K., J. Ame. Chem. Soc., 109, 7255, 1987.
[7]Frank, S. N. and Bard, A. J., J. Phys. Chem. 81, 1484, 1977.
[8]Skata, T. and Kawai, T., Academic press, New York, 1983.
[9]Rajehwar, K. and de Tacconi, N. R., Chem. Mater. 13, 2765, 2001.
[10]Vaidyanathan Subramanian and Prashant V. Kamat., J. Phys. Chem. B 107, 7479-7485 2003.
[11]Vaidyanathan Subramanian, Eduardo E. Wolf, Prashant V. Kamat., J. Am. Chem. Soc. 126, 4943-4950, 2004.
[12]溫慧怡,高長寬比氧化鋅奈米柱之生成-氫氣後處理效應研究,碩士論文
[13]M. H. Huang, Yi. Wu, H. Feick, N. Tran, E. Weber, P. Yang, Adv. Mater., 13, 113, 2001.
[14]Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, S. Q. Feng, Appl. Phys. Lett., 78, 407, 2001.
[15]Z. W. Pan, Z. R. Dai, Z. L. Wang, Science, 291, 1947, 2001.
[16]W. I. Park, D. H. Kim, S. W. Jung, G. C. Yia, Appl. Phys. Lett., 80, 4232, 2002.
[17]Y. Li, G. W. Meng, L. D. Zhang, F. Phillipp, Appl. Phys. Lett., 76, 2011 2000.
[18]http://www.almaden.ibm.com/via/stm/corral.html
http://www.almaden.ibm.com/almaden/media/image_mirage.html
[19]Alivisatos, A. P., Science, 271, 933, 1996.
[20]Ray H. Baughman, Anvar A. Zakhidov,Walt A. de Heer., Science, 297, 787, 2002.
[21]Peidong Yang, Science, 292, 1897, 2001.
[22]Peidong Yang, J. Phys. Chem. B, 2001.
[23]Peidong Yang Business brifing : Global Photoniics Applications & Technology, 42
[24]李定中,觸媒的原理與應用,正中,十月(1999).
[25]陳妙棋,複合鍍TiO2-Ni光觸媒之製造與特性分析,碩士論文
[26]Skata, T., Heterogeneous photocatalysis in Liquid-Solid Interface. In Photocatalysis : fundamentals and applications, p311-338, John Wiley & Sons, New York, 1989.
[27] Amy L. Linsebigler., Chem. Rev., 95, 735-758, 1995.
[28]Serpone N., J. Photochem. Photobio. A: Chem, 85, 247-255, 1995.
[29]Q Zhang, L Gao., Applied Catalysis B, 26, 207, 2000.
[30]Adrian W. Electrochemistry of Semiconductors. 1998.
[31]M. Anpo, T. Shima., J. Phys. Chem. 91, 4305-4310, 1987.
[32]Z. Zhang, C. C. Wang., J. Phys. Chem. B. 102, 10871, 1998.
[33]Fox M. A. and Dulay M. T., Chem. Rev. 93, 341-357, 1993.
[34]Herrmann J. M., Catal. Today 53, 115-129, 1999.
[35]Davis A. P. and Huang C. P., Water Res. 25(10), 1273-1278, 1991.
[36]R. Asahi, T. Morikawa., Science, 293, 269, 2001.
[37]Shahed U. M. Khan, Mofareh Al-Shahry., Science 297, 2243, 2002.
[38]Tsutomu U. and Tetsuya Y., J. of Physics and Chemistry of Solids, 63, 1909-1920, 2002.
[39]Chuan-yi Wang and Detlef W., Chem. Commun, 1539–1540, 2000.
[40]Iwasaki Mitsunobu and Hara Masayoshi., Journal of Colloid and Interface Science, 224, 202–204, 2000.
[41]Nakato Y., J. Phys, Chem. 92, 2316, 1988.
[42]Annabel Wood, Michael Giersig., J. Phys, Chem. B. 105, 8810-8815, 2001.
[43] V. Subramanian, Prashant V. Kamat., Nano. Letters 3(3), 353, 2003.
[44]S. Sakthivel et al., Water Research 38, 3001-3008, 2004.
[45]Dieckmann M. S. and Gray K. A., Water Research 30(5), 1169, 1996.
[46] James D. Plummer Silicon VSLI Technology
[47]Xia, Y., and Yang, P., Adv. Mater., 15, 353, 2003.
[48]Wu, J-J., and Liu, S-S., J. Phys. Chem. B, 106, 9546, 2002.
[49]Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett., 4, 89, 1964.
[50]Hiruma, K., Appl. Phys. Lett., 59, 431, 1991.
[51]Alivisatos, A. P, Nature, 404, 59, 2000.
[52]Alivisatos, A. P, J. Am. Chem. Soc., 122, 12700, 2000.
[53]Tang, C. C., Fan, S. S., Chem. Phys. Lett., 333, 12, 2001.
[54]Wang, N., Tang, Y. H., Zhang, Y. F., Lee, C. S., and Lee, S. T., Physical Review B, 58, R16024, 1998.
[55]Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Physical Review B, 64, 113304, 2001.
[56]Zhang, R. Q., Chu, T. S., Cheung, H. F., Wang, N., and Lee, S. T., Materials Science and Engineering C, 16, 31, 2001.
[57]Peng, H. Y., Pan, Z. W., Xu, L., Fan, X. H., Wang, N., Lee, C. S., and Lee, S. T., Adv. Mater., 13, 317, 2001.
[58]Zhang, R. Q., Lifshitz, Y., and Lee, S. T., Adv. Mater., 15, 635, 2003.
[59]Meng, X-M., Hu, J-Q., Jiang, Y., Lee, C-S., and Lee, S-T., Appl. Phys. Lett., 83, 2241, 2003.
[60]Lee, S. T., Zhang, Y. F., Wang, N., Tang, Y. H., Bello, I., and Lee, C. S., J. Material Research, 14, 4503, 1999.
[61]Zhang, Y. F., Tang, Y. H., Wang, N., Lee, C. S., Bello, I., Lee, S. T., J. Crystal Growth, 197, 136, 1999.
[62]翁得期,化學氣相沉積法低溫成長奈米多晶矽薄膜級氧化矽奈米線之
研究,博士論文
[63]Peng X. S., J. Mater. Chem, 12, 1602, 2002.
[64]Peng W. S., Appl. Phys. A, 74, 437, 2001.
[65]Lo H. C., Das D., Hwang J. S., Appl. Phts. Lett, 83, 1420, 2003.
[66]汪建民,材料分析
[67]鄭信民,林麗娟,工業材料 181, 100-108, 2002.
[68]行政院國家科學委員會精密儀器發展中心,儀器總覽,基本物理量測
儀
[69]楊明勳,鐵磁性Zn1-xCoxO奈米柱之成長與特性分析,碩士論文
[70] Wen-Jun Li and Er-Wei Shi., Journal of Crystal Growth, 203, 186-196, 1999.
[71]Kinuyo K. and Manabu Komatsu., Applied Surface Science, 189, 265-270, 2002.
[72]L. N. Dem’yanets and D. V. Kostomarvo., Inorganic Materials, 38, 124-131, 2002.
[73]Hussain Al-Ekabi and Nick Serpone., J. Phys. Chem. 92, 5726, 1988.
[74]Cun Wang, Xinming Wang, Bo-Qing Xu., J. Photochem. Photobio. A: Chem, 168, 47-52, 2004.
[75]I.M. Arabatzis, T. Stergiopoulos, D. Andreeva., Journal of Catalysis, 220, 127-135, 2003.