| 研究生: |
陳易靖 Chen, Yi-Jing |
|---|---|
| 論文名稱: |
以電荷動力實現快速且高靈敏度的FRET分子感測 Electrokinetic Microdevice for Rapid and Ultrasensitive Quantum Dot-Based FRET Molecular Sensing |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 量子點 、交流電荷奈米捕捉技術 、螢光共振能量轉移 、DNA檢測 |
| 外文關鍵詞: | Quantum Dot, Fluorescence Resonance Energy Transfer, AC Electrokinetics, DNA probing |
| 相關次數: | 點閱:111 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,螢光共振能量轉移的相關應用越來越受到重視,因其不僅能夠實現分子檢測,也能了解特定分子間的交互作用。然而實際應用時FRET訊號仍是相當微弱且須花很長的時間來檢測。又由於使用的螢光供體為奈米等級的量子點,這使得分子的操控上又更加困難了。本文我以交流電荷動力作用為基礎來開發具有實現快速增強FRET訊號功能的微流控平台,藉由交流電滲流(AC Electro-Osmosis, ACEO)微漩渦及介電泳的輔助來匯集QD並固定於電極上形成緊密的自組裝結構,接著再將目標單股DNA(single stranded DNA, ssDNA)集濃並捕捉到事先匯集好的QD來增益FRET檢測。結果顯示在一開電場的瞬間可以立即看到明顯FRET訊號的增強,表示QD及目標ssDNA的鍵結速率在ACEO的作用下可以在30秒之內迅速提升。此方法也相當靈敏,在不使用APD的情況之下,ssDNA濃度低至0.16 pM仍可以測得到。這樣的微流控平台可以針對目標或特定分子實現快速偵測及辨識,故對於設計生物晶片以進行有效生醫診斷的開發有很高的開發潛力。
在本文的第四章,我先演示了以陣列式的60微米城垛式電極利用ACEO分開捕捉QDs及ssDNA並探討ACEO的捕捉機制,從中評估粒子的集濃倍率。結果發現到QDs在一開啟電場後就立即被捕捉到電極中心及邊緣,其中,邊緣區的結構較緊實,我認為是介電泳(dielectrophoresis, DEP)及電場誘導偶極( field induced dipole attraction, FIDA)的加成作用,使得粒子聚集的更緊密。同樣地,ssDNAs也能以同樣的方式捕捉到電極區,但電極邊緣的聚集並不明顯。從本章的結果來說,我成功地使用微米電極實現奈米粒子的捕捉。
在本文的第五章,我開始進行FRET檢測,利用ACEO先集濃QDs,利用QDs集濃後會吸附在電極表面的特性,先將QD溶液洗掉後再加入ssDNA溶液來進行FRET。結果在一開啟電場後,立即可以測到快速且明顯的FRET訊號,而且,在目標ssDNA濃度為16 nM時,其FRET效率也與理論值10.6%接近。然而,我也發現到FRET訊號之中會參雜靜電吸附的假訊號,會干擾到實際的FRET訊號,這使得靈敏度無法繼續提升。
在本文的第六章,我先調降了ssDNA探針的濃度,降低假訊號的干擾,另外,我也發現在城垛式電極的FRET訊號強弱會隨著區域不同而不同,訊號大小為:T字形區域>內部邊緣>中心區,而我認為T字形區的訊號最高的原因是其粒子的集濃效果最好,這是來自於不對稱電極造成的額外淨流動,DEP和FIDA皆在T字形區輔助ACEO的匯集,而且已聚集好的分子不會被帶走,使得T字形區的聚集結構更加穩定且不容易被破壞。於是我改用T字形區域來進行FRET。最後發現到隨著Target ssDNA濃度的降低,FRET訊號有下降的趨勢,且濃度可下探至0.16 pM。
Fluorescence Resonance Energy Transfer (FRET) is a widely used technique for probing target molecules or specific molecular interactions. However, it might suffer weak FRET signals and long detection time. In this thesis I develop a new microfluidic FRET sensor to overcome the above shortcomings. The FRET sensing is made by probing target ssDNAs by quantum dots (QDs). I apply the joint effects of AC electro-osmosis (ACEO), dielectrophoresis (DEP) and field induced dipole attraction (FIDA) to trap nano-sized QDs and ssDNAs. I find that our sensor can not only amplify FRET signals after turning on fields, but also push the FRET detection limit to 0.16 picoM without using a highly sensitive photodetector like avalanche photodiode (APD). Therefore, it will have a great potential to capture and detect desired biomarkers in dilute solutions, opening up a new avenue for more efficient and accurate medical screening and molecular assays at chip scales.
A. H. C. Ng, U. Uddayasankar and A. R. Wheeler, Immunoassays in microfluidic systems, Analytical and Bioanalytical Chemistry, 397, 991-1007, 2010.
B. A Pollok and R. Heim, Using GFP in FRET-based applications, Trends in Cell Biology, 9, 57-60, 1999.
C.-C. Lin, J.-H. Wang, H.-W. Wu and G.-B. Lee, Microfluidic immunoassays, Journal of the Association for Laboratory Automation, 15, 253-275, 2010.
C. H. Vannoy, A. J. Tavares, M. O. Noor, U. Uddayasankar and U. J. Krull, Biosensing with quantum dots: a microfluidic approach, Sensor, 11, 9732-63, 2011.
C.-Y. Zhang and L. W. Johnson, Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit, Angewandte Chemie International Edition, 46, 3482-85, 2007.
C.-Y. Zhang, H.-C. Yeh, M. T. Kuroki and T.-H. Wang, Single-quantum-dot-based DNA Nanosensor, Nature Materials, 4, 826-31, 2005.
F. P. Schwarz, S. Robinson and J. M. Butler, Thermodynamic comparison of PNA/DNA and DNA/DNA hybridization reactions at ambient temperature, Nucleic Acid Research, 27, 24, 4792-800, 1999.
H. Morgan, N. G. Green, AC Electrokinetic: Colloids and Nanoparticles. Research Studies, Baldock, UK, 2003.
H.-C. Chang, L. Y. Yeo, Electro-kinetically-driven Microfluidics and Nanofluidics. Cambridge University Press, USA, 2010.
I.-F. Cheng, S. Senapati, X. Cheng, S. Basuray and H.-C. Chang, A rapid field-use assay for mismatch number and location of hybridized DNAs, Lab Chip, 10, 828-31, 2010.
I.-F. Cheng, H.-W. Han and H.-C. Chang, Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species, Biosensors and Bioelectronics, 33, 36-43, 2012.
I. Medintz and N. Hildebrandt, FRET-Forster Resonance Energy Transfer, Wiley-VCH, Germany, 2014.
J.-R. Du, Y.-J. Juang, J.-T. Wu and H.-H. Wei, Long-range and superfast trapping of DNA molecules in an ac electrokinetic funnel, Biomicrofluidics, 2, 044103, 2008.
J.-R. Du and H.-H. Wei, Focusing and trapping of DNA molecules by head-on ac electrokinetic streaming through join asymmetric polarization, Biomicrofluidics, 4, 034108, 2010.
J. Wu, Y. Ben, D. Battigelli and H.-C. Chang, Long-range AC electroosmotic trapping and detection of bioparticles, Industrial and Engineering Chemistry Research, 44, 2815-22, 2005.
L. Stryer, Fluorescence energy transfer as a spectroscopic ruler, Annual Review of Biochemistry, 47, 819-846, 1978.
M. Srisa-Art, E. C. Dyson, A. J. deMello and J. B. Edel, Monitoring of real-time streptavidin-biotin binding kinetics using droplet microfluidics, Analytical Chemistry, 80, 7063-67, 2008.
T. T. Nikiforov and J. M. Beechem , Development of homogeneous binding assays based on fluorescence resonance enrgy transfer between quantum dots and Alexa Fluor fluorophores, Analytical Biochemistry, 357, 68-76, 2006.
N. Swami, C.-F. Chou, V. Ramamurthy and V. Chaurey, Enhancing DNA hybridization kinetics through constriction-based dielectrophoresis, Lab on a Chip, 9, 3212-20, 2009.
P. C. Weber, J. J. Wendoloski, M. W. Pantoliano and F. R. Salemme, Crystallographic and thermodynamic comparison of natural and synthetic ligands bound to streptavidin, Journal of the American Chemical Society, 114, 3197-3200, 1992.
S. Basuray, S. Senapati, A. Aijian, A. R. Mahon and H.-C. Chang, Shear and AC field enhanced carbon nanotube impedance assay for rapid, sensitive, and mismatch-discriminating DNA hybridization, ACS Nano, 3, 1823-30, 2009.
S. Fraden, A. J. Hurd and R. B. Meyer, Electric-field-induced association of colloidal particles, Physical Review Letters, 63, 2373, 1989.
S.-J. Liu, S.-H. Hwang and H.-H. Wei, Nonuniform electro-osmotic flow on charged strips and its use in particle trapping, Langmuir, 24, 13776, 2008.
T. E. Ouldridge, P. Sulc, F. Romano, J. P. K. Doye and A. A. Louis, DNA hybridization kinetics: zippering, internal displacement and sequence dependence, Nucleic Acids Research, 41, 19, 8886-95, 2013.
Th. Förster, Zwischenmolekulare Energiewanderung und Fluoreszenz, Annals of Physics, 437,1-2, 55-75, 1948.
T. G. Henares, F. Mizutani and H. Hisamoto, Current development in microfluidic immunosensing chip, Analytica Chimica Acta, 611, 17-30, 2008.
Z. Gagnon, S. Senapati, J. Gordon and H.-C. Chang, Dielectrophoretic detection and quantification of hybridized DNA molecules on nano-genetic particles, Electrophoresis, 29, 4808-12, 2008.
連政偉,製備含量子點修飾之DNA分子梳並應用其發展具分子探測與檢測功能之一維FRET生物感測器,國立成功大學,碩士論文,2011。
陳信龍,膠體粒子交互作用與單一高分子鏈構形變化之偵測與診斷,國立成功大學,碩士論文,2011。