簡易檢索 / 詳目顯示

研究生: 李帛軒
Lee, Po-Hsuan
論文名稱: 高壓合成LixFe1-xOHFeSe之製程參數探索
The processing parameters for high pressure synthesis of LixFe1-xOHFeSe
指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: (LixFe1-x)OHFeSeβ-FeSe超導體高壓合成
外文關鍵詞: FeSe, (LixFe1-x)OHFeSe, superconductor
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由高壓粉末固態加熱製程,合成 (LixFe1-x)OHFeSe超導體,實驗中調節的主要參數有起始物比例、外加壓力、溫度、反應時間、等等,試圖找到合成(LixFe1 x)OHFeSe純相樣品之條件。所用之起始物包括鐵粉、硒粉、氫氧化鋰(LiOH)、以及由鐵粉與硒粉預先合成之β相硒化鐵(β-FeSe)。實驗已嘗試壓力範圍0.75~1.25 GPa,溫度範圍160~500°C,反應時間24~48小時。實驗結果發現在下列條件合成之樣品中,(LixFe1-x)OHFeSe相所含比例最高:起始物成分及比例β FeSe : Fe : LiOH = 1 : 0.2 : 0.8,外加壓力1.0 GPa,400°C加熱24小時。但是,所有樣品中仍含有相當比例的二次相,其中尤以β FeSe以及δ-FeSe等最難避免。此外,本研究還就(LixFe1 x)OHFeSe中不同Li/Fe之比例對其晶格常數及其它物理性質的影響做了一些探討。

    Suitable synthesis conditions, including the starting chemicals and compositions, applied pressures, and the reaction temperatures and times, for the synthesis of a pure phase of (LixFe1-x)OHFeSe were studied. The starting chemicals included the powders of Se, Fe and LiOHH2O, as well as the pre-synthesized βFeSe from Se and Fe. The following ranges of the synthesis parameters have been attempted: pressure 0.75~1.25 GPa, temperature 160~500 °C, and reaction time 24~48 h. The results indicated that the optimal samples, which contained the highest amount of the desired (LixFe1-x)OHFeSe phase, were prepared from β FeSe/Fe/LiOH=1/0.2/0.8 by heating the samples at 400 °C for 24 h at the pressure of 1 GPa. It was found that some secondary phases, i.e. β FeSe,  FeSe, etc., were very difficult to be eliminated from the samples. Based on the X-ray diffraction data, the lattice constants and the Li/Fe ratios, i.e. x in the synthesized (LixFe1-x)OHFeSe, were refined by the software of the General Structure Analysis System (GSAS), the results of which showed that the a/b-axes of the unit cell increased, while the c-axis decreased, as x increased.

    摘要 I Extended Abstract II 目錄 XI 表目錄 XIV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 實驗方向 3 第二章 理論基礎與文章回顧 4 2-1 超導體的發展歷程 4 2-1-1 超導體的發現 4 2-1-2 超導體的發展 4 2-1-3 超導體現今運用及展望 6 2-2 超導體的特性 7 2-2-1 超導體的基本性質[11] 7 2-2-2 超導體的臨界條件[11] 8 2-2-3 超導體的類型[11] 9 2-3 超導體相關理論 11 2-3-1 超導與熱力學之間的關聯[12] 11 2-3-2 二流體模型[13] 12 2-3-3 倫敦方程式[14] 12 2-3-4 BCS理論[15] 14 2-4 高溫超導體材料 15 2-4-1 銅氧類高溫超導體 15 2-4-2 鐵基超導材料 16 2-5 銅氧類超導體與鐵基超導體之比較 17 2-6 鐵基超導體-FeSe 18 2-6-1 磁性材料概說 19 2-6-2 FeSe及相關化合物基本結構介紹 22 2-6-3 FeSe近期研究成果 23 第三章 實驗方法與分析儀器 26 3-1 實驗儀器設備 26 3-1-1 常用設備 26 3-1-2 大體積壓力機(Large High Pressure Apparatus)[29][30] 27 3-2 實驗材料及藥品 29 3-2-1 常用藥品 29 3-3 實驗流程 31 3-3-1 實驗流程 31 3-3-2 常壓固相合成之製備流程 32 3-3-3 高壓固相合成之製備流程 33 3-4 樣品性質分析儀器 36 3-4-1 相鑑定(XRD)與結構分析(GSAS) 36 3-4-2 表面形貌(SEM)與成分分析(EDS) 38 3-4-3 超導性質檢測(SQUID) 39 第四章 實驗回顧與結果討論 40 4-1高壓下β-FeSe、鐵、氫氧化鋰反應之結果 42 4-1-1 β-FeSe的製備流程 43 4-1-2 改變初始材料之結果 46 4-1-3 反應物比例對成相的影響 50 4-1-4 外加壓力對高壓製程成相的影響 54 4-1-5 加熱溫度對高壓製程成相的影響 56 4-1-6 延長加熱時間對高壓製程成相的影響 58 4-1-7 小結 59 4-2高壓下鐵、硒、氫氧化鋰反應之結果 60 4-2-1 退火處理對高壓製程結果的影響 61 4-2-2 成分比例對高壓製程結果的影響 64 4-2-3 溫度變化對高壓製程結果的影響 66 4-2-4 元素比例及超導特性分析 70 4-2-5 小結 72 4-3 兩種起始物合成LixFe1-xOHFeSe的比較 73 4-3-1 銀的擴散問題 73 4-3-2 Li/Fe比例對(LixFe1-x)OHFeSe中晶格的影響 76 第五章 結論 78 第六章 參考文獻與資料 79

    1. Müller, K. A., M. Takashige, and J. G. Bednorz. "Flux trapping and superconductive glass state in La2CuO4−y: Ba." Physical review letters 58.11 (1987): 1143.
    2. Wu, Maw-Kuen, et al. "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure." Physical Review Letters 58.9 (1987): 908.
    3. Kamihara, Yoichi, et al. "Iron-based layered superconductor: LaOFeP." Journal of the American Chemical Society 128.31 (2006): 10012-10013.
    4. Kamihara, Yoichi, et al. "Iron-based layered superconductor La [O1-xFx] FeAs (x= 0.05−0.12) with Tc= 26 K." Journal of the American Chemical Society 130.11 (2008): 3296-3297.
    5. Hsu, Fong-Chi, et al. "Superconductivity in the PbO-type structure α-FeSe." Proceedings of the National Academy of Sciences 105.38 (2008): 14262-14264.
    6. Mizuguchi, Yoshikazu, et al. "Superconductivity at 27 K in tetragonal FeSe under high pressure." Applied Physics Letters93.15 (2008): 152505.
    7. 劉煒薪 “用同結構之氫氧化理改造硒化鐵特性之研究” ,國立成功大學材料科學與工程研究所碩士論文. (2015)
    8. Lu, X. F., et al. "Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe." Nature materials 14.3 (2015): 325-329.
    9. Shimizu, Katsuya, et al. "Superconductivity in compressed lithium at 20 K." Nature 419.6907 (2002): 597-599.
    10. http://www.ccas-web.org/superconductivity/#image1,Coalition for the Commerical Application of Superconductors
    11. Javad Heshemi and William F. Smith"Foundations of Materials Science and Engineering, 5e",Mc Graw Hill
    12. 張裕恆, 李玉芝, “超導物理”,(1992)
    13. C.J. Gotter and H. Casimir,”On Superconductivity I” Physica, 1, 306-320. (1934)
    14. London, Fritz, and Heinz London. "The electromagnetic equations of the supraconductor." Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Vol. 149. No. 866. The Royal Society, 1935.
    15. Bardeen, John, Leon N. Cooper, and John Robert Schrieffer. "Theory of superconductivity." Physical Review 108.5 (1957): 1175-1204.
    16. http://www.phys.aoyama.ac.jp/~w3-jun/achievements/study_sc_type _copper_eng.html
    17. Martinelli, A., et al. "Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs (O0. 93F0. 07)." Superconductor Science and Technology 21.9 (2008): 095017.
    18. Pitcher, Michael J., et al. "Structure and superconductivity of LiFeAs." Chemical Communications 45 (2008): 5918-5920.
    19. Gen-Fu, Chen, et al. "Superconductivity in hole-doped (Sr1− xKx) Fe2As2." Chinese Physics Letters 25.9 (2008): 3403.
    20. Garbarino, Gaston, et al. "High-temperature superconductivity (Tc onset at 34 K) in the high-pressure orthorhombic phase of FeSe." EPL (Europhysics Letters) 86.2 (2009): 27001.
    21. Fang, M. H., et al. "Superconductivity close to magnetic instability in Fe (Se1− xTex)0.82." Physical Review B 78.22 (2008): 224503.
    22. 陳楠凱 “摻硫及鋰的FeSe之合成及性質研究” ,國立成功大學材料科學與工程研究所碩士論文. (2011)
    23. Zhang, A. M., et al. "Effects on superconductivity of transition-metal doping in FeSe0.5Te0.5." Journal of Physics: Condensed Matter 22.24 (2010): 245701.
    24. Guo, Jiangang, et al. "Superconductivity in the iron selenide KxFe2Se2
    (0 ≤ x ≤ 1.0)." Physical Review B 82.18 (2010): 180520.
    25. Burrard-Lucas, Matthew, et al. "Enhancement of the superconducting transition temperature of FeSe by intercalation of a molecular spacer layer." Nature materials12.1 (2013): 15-19.
    26. Lu, X. F., et al. "Superconductivity in LiFeO2Fe2Se2with anti-PbO-type spacer layers." Physical Review B 89.2 (2014): 020507.
    27. Lu, X. F., et al. "Superconductivity and phase diagram of (Li0.8Fe0.2) OHFeSe1− xSx." Physical Review B 90.21 (2014): 214520.
    28. Pachmayr, Ursula, et al. "Coexistence of 3d-Ferromagnetism and Superconductivity in [(Li1− xFex)OH](Fe1− yLiy) Se." Angewandte Chemie International Edition 54.1 (2015): 293-297.
    29. 花柏榕 “探討不同價態之鎢與不同囊包材質影響橄欖石-金屬鐵之高溫高壓產物相產物關係” ,國立成功大學地球科學研究所碩士論文. (2012)
    30. P. J. Florian, S. Y. Chien, J. K. Kung and Y. Wang, “Studying Materials under Extreme Conditions-Introduction of Large Volume High Pressure Apparatus” ,科儀新知,34, 1. (2012)
    31. P. Villars, L. D. Calvert, “Pearson’s handbook of crystallographic data for intermetallic phases” ,ASM International. (1991)
    32. Dong, Xiaoli, et al. "Phase Diagram of (Li1–xFex) OHFeSe: A Bridge between Iron Selenide and Arsenide Superconductors." Journal of the American Chemical Society 137.1 (2014): 66-69.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE