| 研究生: |
陳庭歡 Chen, Ting-Huan |
|---|---|
| 論文名稱: |
探討通勤者對於高鐵通勤困難度及願付價格之研究 Exploring the Difficulty and Willingness to Pay of High-Speed Rail for Commuters |
| 指導教授: |
鄭永祥
Cheng, Yung-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 台灣高鐵 、通勤者 、願付價格 、Rasch模式 |
| 外文關鍵詞: | Taiwan High Speed Rail, Commuter, Rasch, Willingness to Pay |
| 相關次數: | 點閱:170 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣高鐵自2007年通車後,大幅縮短台灣西部各大城市間的旅行時間,亦成為跨縣市通勤者運具選擇之一,但高鐵原先設計之服務對象為城際運輸之旅客,較無法顧及通勤者注重的車站可及性、即時性等服務,而造成高鐵通勤者的困難,故在考量通勤者的通勤品質時,除了考慮主要運具之服務品質之外,亦須考量次要運具之服務品質以及與主要運具之整合性。
本研究利用試題反應理論之Rasch模式來量測通勤者在使用高鐵通勤之整體過程中所遇到的困難,包含從居住地至工作地的整體運輸過程,並帶入跨理論模式的行為改變階段模型,找出不同行為階段的通勤者其認知困難之差異,同時探討不同社經特性之通勤者之認知差異,接著結合個體選擇模式,透過敘述性偏好來了解通勤者使用高鐵作為通勤主要運具之意願,以及其願意付出多少成本來減少通勤困難度。
研究結果顯示高鐵站到目的地的階段是通勤者認為較困難,且其對於運具選擇偏好有較大的影響,而投入資源於此段階段的改善成效顯著,通勤者也願意付出較高的願付價格來減少此階段的旅行時間,故建議台灣高鐵需加強高鐵站到目的地的可及性,而初期可針對大眾運輸網路較不完整的雲嘉南地區進行改善,中期可改善大眾運輸較為完善的台北、新竹與台中地區,而有大眾運輸發展潛力的桃園地區則建議可持續投入資源改善。至於高鐵成本的部分,台灣高鐵可針對非持續期的每週通勤者實施價格策略,以吸引其他運具通勤者轉而使用高鐵通勤,若將通勤成本下降10%,將會有12.07%的其他運具通勤者轉移至高鐵。透過本研究之結果,可針對不同族群的人實施差別取價及差異化服務,並提供台灣高鐵未來制定策略之參考。
The study aims to understand how commuters perceive difficulty of THSR commuting and differences in perceived difficulty between different groups of commuters using the Rasch model. The study further attempts to understand the preferences of commuters who differ in perceived difficulty and the prices they are willing to pay for less difficulty by mixed logit model. In order to improve the accessibility and mobility of THSR, we consider access stage, on-HSR stage and egress stage of entire THSR commuting as indicators for evaluating THSR commuting services. We use the Transtheroretical Model’s ‘stages of changes’ framework to explore the potential commuters for increased THSR commuting. The results shows that egress stage is difficult by the commuters perceive and to have a greater impact on their preference. As committing resources in this stage can make significant improvement, only short-term commitment is required for counties with less complete public transport networks. In addition, cities with more developed public transport, commitment has a .significant effect in both the initial and mid-stages. With the potential area, continuously developing a public transport network will also be expected to effectively lower the difficulty of THSR commuting.
Regarding to price, the study finds that the weekly commuters are more flexible and sensitive about prices and about 12.07% of commuters will shift from other mode to THSR when the cost of THSR drops 10%. It is hoped that the study can provide some insights for Taiwan High Speed Rail in strategy adjustment, improvement and development.
黃山(2006),台鐵站務員工處理安全危機之感認能力研究,交通部運輸研究所
劉訓蓉、陳艷秋、吳雅君、曾孟琹(2014),臺灣地區通勤、通學狀況之研析、行政院主計總處
經濟部能源局(2015),103年度車輛油耗指南
Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. Psychological review, 84(2), 191.
Buckeye, K. R. (1992). Implications of High-Speed Rail on Air Traffic. Transportation Research Record, (1341).
Bond, T. G., & Fox, C. M. (2001). Applying the Rasch model: Fundamental measurement in the human sciences. Mahwah (NJ): Lea.
Bamberg, S. (2007). Is a Stage Model a Useful Approach to Explain Car Drivers' Willingness to Use Public Transportation?. Journal of Applied Social Psychology, 37(8), 1757-1783.
Crocker, L. M., & Algina, J. (1986). Introduction to classical and modern test theory (Vol. 6277). New York: Holt, Rinehart and Winston.
Caplice, C., & Mahmassani, H. S. (1992). Aspects of commuting behavior: preferred arrival time, use of information and switching propensity. Transportation Research Part A: Policy and Practice, 26(5), 409-418.
Chakour, V., & Eluru, N. (2014). Analyzing commuter train user behavior: a decision framework for access mode and station choice. Transportation, 41(1), 211-228.
DiClemente, C. C., Prochaska, J. O., & Gibertini, M. (1985). Self-efficacy and the stages of self-change of smoking. Cognitive therapy and Research, 9(2), 181-200.
De Palma, A., & Rochat, D. (2000). Mode choices for trips to work in Geneva: an empirical analysis. Journal of Transport Geography, 8(1), 43-51.
Dawes, J. G. (2008). Do data characteristics change according to the number of scale points used? An experiment using 5 point, 7 point and 10 point scales. International journal of market research, 51(1), 61-77.
Donald, I. J., Cooper, S. R., & Conchie, S. M. (2014). An extended theory of planned behaviour model of the psychological factors affecting commuters' transport mode use. Journal of Environmental Psychology, 40, 39-48.
Hambleton, R. K., & Swaminathan, H. (1985). Item response theory: Principles and applications (Vol. 7). Springer Science & Business Media.
Janis, I. L., & Mann, L. (1977). Decision making: A psychological analysis of conflict, choice, and commitment. Free Press.
Jain, S., Aggarwal, P., Kumar, P., Singhal, S., & Sharma, P. (2014). Identifying public preferences using multi-criteria decision making for assessing the shift of urban commuters from private to public transport: A case study of Delhi. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 60-70.
Klis, M. (2009). Commuter partnerships: balancing home, family, and distant work. Faculty of Social and Behavioural Sciences.
Lawson, A. R., McMorrow, K., & Ghosh, B. (2013). Analysis of the non-motorized commuter journeys in major Irish cities. Transport policy, 27, 179-188.
Liu, C., Susilo, Y. O., & Karlström, A. (2015). Investigating the impacts of weather variability on individual’s daily activity–travel patterns: A comparison between commuters and non-commuters in Sweden. Transportation Research Part A: Policy and Practice, 82, 47-64.
Li, S. Y., Roslan, S., Abdullah, M. C., & Abdullah, H. (2015). Commuter Families: Parental Readiness, Family Environment and Adolescent School Performance. Procedia-Social and Behavioral Sciences, 172, 686-692.
McFadden, D. (1976). The mathematical theory of demand models. Behavioral Travel-Demand Models. Toronto, Lexington Books.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149-174.
McFadden, D. (1986). The choice theory approach to market research. Marketing science, 5(4), 275-297.
Mahmassani, H. S. (1990). Dynamic models of commuter behavior: Experimental investigation and application to the analysis of planned traffic disruptions. Transportation Research Part A: General, 24(6), 465-484.
Mahmassani, H. S., & Liu, Y. H. (1999). Dynamics of commuting decision behaviour under advanced traveller information systems. Transportation Research Part C: Emerging Technologies, 7(2), 91-107.
Nordfjærn, T., Şimşekoğlu, Ö., Lind, H. B., Jørgensen, S. H., & Rundmo, T. (2014). Transport priorities, risk perception and worry associated with mode use and preferences among Norwegian commuters. Accident Analysis & Prevention, 72, 391-400.
Prochaska, J. O., & DiClemente, C. C. (1982). Transtheoretical therapy: Toward a more integrative model of change. Psychotherapy: theory, research & practice, 19(3), 276-288.
Pearmain, D., Swanson, J., Kroes, E., & Bradley, M. (1991). Stated Preferences Technique. A Guide To Practice (2nd edition). Steer Davies Gleave and Hague Consulting Group.
Prochaska, J. O., DiClemente, C. C., & Norcross, J. C. (1992). In search of how people change: applications to addictive behaviors. American psychologist, 47(9), 1102-1114.
Prochaska, J., Norcross, J., & DiClemente, C. (1994). Changing for good. New York: Avon Book.
Prochaska, J. O., Redding, C.A., and Evers, K. E., (1996). The Transtheoretical model and stages of change. In K. Glanz, F. M. Lewis, and B. K. Rimer (Eds.). Health behavior and health education: Theory research. And practice(2nd ed.). San Francisco: Jossey-Bass.
Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen: Danish Institute for Educational Research.
Rhodes, A. R. (2002). Long-distance relationships in dual-career commuter couples: A review of counseling issues. The Family Journal, 10(4), 398-404.
Rose, G., & Marfurt, H. (2007). Travel behaviour change impacts of a major ride to work day event. Transportation Research Part A: Policy and Practice, 41(4), 351-364.
Sandow, E., & Westin, K. (2010). The persevering commuter–Duration of long-distance commuting. Transportation Research Part A: Policy and Practice, 44(6), 433-445.
St-Louis, E., Manaugh, K., van Lierop, D., & El-Geneidy, A. (2014). The happy commuter: A comparison of commuter satisfaction across modes. Transportation research part F: traffic psychology and behaviour, 26, 160-170.
Train Kenneth, E. (2003). Discrete choice methods with simulation. Cambridge University Press.
Thigpen, C. G., Driller, B. K., & Handy, S. L. (2015). Using a stages of change approach to explore opportunities for increasing bicycle commuting. Transportation Research Part D: Transport and Environment, 39, 44-55.
Wang, L., Li, L., Wu, B., & Bai, Y. (2013). Private Car Switched to Public Transit by Commuters, in Shanghai, China. Procedia-Social and Behavioral Sciences, 96, 1293-1303.
Yang, M., Zhao, J., Wang, W., Liu, Z., & Li, Z. (2015). Metro commuters’ satisfaction in multi-type access and egress transferring groups. Transportation Research Part D: Transport and Environment, 34, 179-194.
Zimmerman, G., Olsen, C. & Bosworth, M. (2000). A ‘stages of change’ approach to helping patients change behavior. American Family Physician, 61(5), 1409–1416.
校內:2021-10-24公開