| 研究生: |
林昱均 Lin, Yu-Chun |
|---|---|
| 論文名稱: |
以多功能超穎介面實現即時多通道奈米光學加密系統 Multifunctional metasurface for real-time multi-channel for optical information encryption |
| 指導教授: |
吳品頡
Wu, Pin-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 46 |
| 中文關鍵詞: | 多重共振超穎介面 、幾何相位 、向量全像術 、結構色刻印 、資訊加密 |
| 外文關鍵詞: | Multi-resonance metasurface, Geometric phase, Vectorial meta-hologram, Structural color printing, Optical information encryption |
| 相關次數: | 點閱:76 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,光學安全平台與資訊加密受到高度重視。金屬超穎介面為由人造次波長結構所組成的準二維材料,經由入射電磁波可產生表面電漿共振,可於適當的結構設計下達到所需的光學特性。本文提出結合DBR(分散式布拉格反射鏡)基板和超穎奈米結構,利用它們之間的耦合於反射光譜產生多重共振特性,達到資訊加密等應用需具有多波長高Q共振的效果。
我們所展示的多重共振超穎介面由優化過後的多波長超穎單元結構所組成,並利用幾何相位的概念達到2π相位調控,以及使用向量全像術的多偏振控制功能產生多個獨立通道影像,最後結合結構色刻印特徵,預期可以增強光學加密的安全性。我們提出的光學加密技術,預估能將32個通道(8個波長×4個偏振)的資訊編碼到我們所設計的超穎介面中。
With the development of technology, optical security platform and information encryption have gained a lot of attention. Plasmonic metasurfaces are quasi-two-dimensional materials composed of artificial sub-wavelength structures. Via appropriate structural design and optimization, light attributes like amplitude, phase, and polarization can be modulated at will with plasmonic resonances. In this work, we propose that multiple resonances can be generated by incorporating the optical interaction between a combine distributed Bragg reflector (DBR) substrate and nanostructures. The realization of multi-resonances with a simple structural configuration will be practical for information encryption.
The geometric phase method is utilized to achieve 2π phase shift. Besides, the proposed multi-resonance metasurface is multiplexed with polarization for realizing the multi-color vectorial meta-hologram, which can assist in approaching the dynamic optical encryption system. Finally, the combination of the multi-channel vectorial meta-hologram and the structural color printing will be innovated for real-time multi-channel optical information encryption.
[1] A. Y. Zhu, W. T. Chen, M. Khorasaninejad, J. Oh, A. Zaidi, I. Mishra, R. C. Devlin, and F. Capasso, "Ultra-compact visible chiral spectrometer with meta-lenses," APL Photonics 2, 036103 (2017).
[2] Y.-W. Huang, W. T. Chen, W. Y. Tsai, P. C. Wu, C. M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).
[3] D. Schurig, J. J. Mock, B. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-980 (2006).
[4] V. G. Veselago, "Electrodynamics of substances with simultaneously negative and," Usp. Fiz. Nauk 92, 517-526 (1967).
[5] J. B. Pendry, "Negative refraction makes a perfect lens," Physical Review Letters 85, 3966 (2000).
[6] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters 84, 4184 (2000).
[7] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, "Metamaterials and negative refractive index," Science 305, 788-792 (2004).
[8] J. Renger, R. Quidant, N. van Hulst, S. Palomba, and L. Novotny, "Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing," Physical Review Letters 103, 266802 (2009).
[9] S. Palomba, M. Danckwerts, and L. Novotny, "Nonlinear plasmonics with gold nanoparticle antennas," Journal of Optics A: Pure and Applied Optics 11, 114030 (2009).
[10] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, "Optical activity in planar chiral metamaterials: Theoretical study," Physical Review A 76, 023811 (2007).
[11] B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: simulations and experiments," Journal of Optics A: Pure and Applied Optics 11, 114003 (2009).
[12] E. Plum, V. Fedotov, and N. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Applied Physics Letters 94, 131901 (2009).
[13] C. Faure, O. Richoux, S. Félix, and V. Pagneux, "Experiments on metasurface carpet cloaking for audible acoustics," Applied Physics Letters 108, 064103 (2016).
[14] Z. Wu, L. Li, Y. Li, and X. Chen, "Metasurface superstrate antenna with wideband circular polarization for satellite communication application," IEEE Antennas and Wireless Propagation Letters 15, 374-377 (2015).
[15] J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science 321, 930-930 (2008).
[16] B. Bai, J. Laukkanen, A. Lehmuskero, and J. Turunen, "Simultaneously enhanced transmission and artificial optical activity in gold film perforated with chiral hole array," Physical Review B 81, 115424 (2010).
[17] N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, "Spinoptical metamaterials: A novel class of metasurfaces," Optics and Photonics News 24, 53-53 (2013).
[18] Y. Liu, and Y. Ma, "One-dimensional plasmonic sensors," Frontiers in Physics 8, 312 (2020).
[19] S. Murai, G. W. Castellanos, T. Raziman, A. G. Curto, and J. G. Rivas, "Enhanced light emission by magnetic and electric resonances in dielectric metasurfaces," Advanced Optical Materials 8, 1902024 (2020).
[20] G. W. Castellanos, P. Bai, and J. Gómez Rivas, "Lattice resonances in dielectric metasurfaces," Journal of Applied Physics 125, 213105 (2019).
[21] M. S. Bin-Alam, O. Reshef, Y. Mamchur, M. Z. Alam, G. Carlow, J. Upham, B. T. Sullivan, J.-M. Ménard, M. J. Huttunen, and R. W. Boyd, "Ultra-high-Q resonances in plasmonic metasurfaces," Nature Communications 12, 1-8 (2021).
[22] S. Yuan, X. Qiu, C. Cui, L. Zhu, Y. Wang, Y. Li, J. Song, Q. Huang, and J. Xia, "Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor," ACS Nano 11, 10704-10711 (2017).
[23] S. Campione, S. Liu, L. I. Basilio, L. K. Warne, W. L. Langston, T. S. Luk, J. R. Wendt, J. L. Reno, G. A. Keeler, and I. Brener, "Broken symmetry dielectric resonators for high quality factor Fano metasurfaces," ACS Photonics 3, 2362-2367 (2016).
[24] T. C. Tan, E. Plum, and R. Singh, "Lattice-enhanced fano resonances from bound states in the continuum metasurfaces," Advanced Optical Materials 8, 1901572 (2020).
[25] K. Koshelev, S. Lepeshov, M. Liu, A. Bogdanov, and Y. Kivshar, "Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum," Physical Review Letters 121, 193903 (2018).
[26] J. Tian, Q. Li, P. A. Belov, R. K. Sinha, W. Qian, and M. Qiu, "High-Q all-dielectric metasurface: super and suppressed optical absorption," ACS Photonics 7, 1436-1443 (2020).
[27] M. V. Rybin, K. L. Koshelev, Z. F. Sadrieva, K. B. Samusev, A. A. Bogdanov, M. F. Limonov, and Y. S. Kivshar, "High-Q supercavity modes in subwavelength dielectric resonators," Physical Review Letters 119, 243901 (2017).
[28] J. S. Totero Gongora, A. E. Miroshnichenko, Y. S. Kivshar, and A. Fratalocchi, "Anapole nanolasers for mode-locking and ultrafast pulse generation," Nature Communications 8, 1-9 (2017).
[29] V. A. Fedotov, A. Rogacheva, V. Savinov, D. P. Tsai, and N. I. Zheludev, "Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials," Scientific Reports 3, 1-5 (2013).
[30] A. Tittl, A. Leitis, M. Liu, F. Yesilkoy, D. Y. Choi, D. N. Neshev, Y. S. Kivshar, and H. Altug, "Imaging-based molecular barcoding with pixelated dielectric metasurfaces," Science 360, 1105-1109 (2018).
[31] S. A. Safiabadi Tali, J. Song, W. Nam, and W. Zhou, "Two‐tier nanolaminate plasmonic crystals for broadband multiresonant light concentration with spatial mode overlap," Advanced Optical Materials 9, 2001908 (2021).
[32] S. D. Liu, E. S. P. Leong, G. C. Li, Y. Hou, J. Deng, J. H. Teng, H. C. Ong, and D. Y. Lei, "Polarization-independent multiple Fano resonances in plasmonic nonamers for multimode-matching enhanced multiband second-harmonic generation," ACS Nano 10, 1442-1453 (2016).
[33] J. Zhou, Z. Liu, X. Liu, P. Pan, X. Zhan, and Z. Liu, "Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption," Nanotechnology 31, 375201 (2020).
[34] N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
[35] S. Sun, K. Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W. T. Kung, and G. Y. Guo, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
[36] M. Kang, T. Feng, H. T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Optics Express 20, 15882-15890 (2012).
[37] S. Pancharatnam, "Generalized theory of interference and its applications," Proceedings of the Indian Academy of Sciences-Section A 44, 398-417 (1956).
[38] M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392, 45-57 (1984).
[39] Y. Qiu, S. Tang, T. Cai, H. Xu, and F. Ding, "Fundamentals and applications of spin-decoupled Pancharatnam—Berry metasurfaces," Frontiers of Optoelectronics 14, 134-147 (2021).
[40] H. H. Hsiao, C. H. Chu, and D. P. Tsai, "Fundamentals and applications of metasurfaces," Small Methods 1, 1600064 (2017).
[41] J. Jang, T. Badloe, Y. Yang, T. Lee, J. Mun, and J. Rho, "Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color," ACS Nano 14, 15317-15326 (2020).
[42] M. A. Ansari, I. Kim, D. Lee, M. H. Waseem, M. Zubair, N. Mahmood, T. Badloe, S. Yerci, T. Tauqeer, and M. Q. Mehmood, "A spin‐encoded all‐dielectric metahologram for visible light," Laser & Photonics Reviews 13, 1900065 (2019).
[43] I. Kim, J. Jang, G. Kim, J. Lee, T. Badloe, J. Mun, and J. Rho, "Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform," Nature Communications 12, 1-9 (2021).
[44] Q. Song, A. Baroni, P. C. Wu, S. Chenot, V. Brandli, S. Vézian, B. Damilano, P. de Mierry, S. Khadir, and P. Ferrand, "Broadband decoupling of intensity and polarization with vectorial Fourier metasurfaces," Nature Communications 12, 1-9 (2021).
[45] https://www.nktphotonics.com/lasers-fibers/