| 研究生: |
范姜銘威 Jiang, Ming-Wei Fan |
|---|---|
| 論文名稱: |
綠色螢光蛋白發光團之對位三級胺取代的合成、光/熱異構化反應、水解反應及光物理性質之探討 para-N,N,N-Trimethylbenzenaminium Chromophore of Green Fluorescent Protein: Synthesis, Photo/Thermal Isomerization, Hydrolysis and Photophysical Properties |
| 指導教授: |
宋光生
Sung, Kuang-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 綠色螢光蛋白類似物 、酸性水解反應 |
| 外文關鍵詞: | GFP, p-HBDI, protonation, acidic condition, hydrolysis |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來已有許多綠色螢光蛋白的相關研究,部分研究表示綠色螢光蛋白在酸性環境下會變性,但都是取自天然的GFP模型直接與酸進行作用,顯少有研究指出p-HBDI在酸性作用下,致使其變性的機制及變性結果。我們的策略則是合成出p-HBDI類似物,利用甲基化的方法模擬質子化,以進行模擬p-HBDI在酸性環境下受到質子化後的效果。我們合成出的p-HBDI類似物n3-Bn和n4-Bn,發現甲基化後五元雜環上的amidine碳 (C7)變得較缺電子,更易受到親核基的攻擊而導致水解。此外,化合物照射波長350 nm之光源後,藉由追蹤核磁共振儀積分值比例得知光異構化轉換率,並利用sigma-plot軟體計算出熱異構化速率常數,另外,我們也使用核磁共振儀與UV-vis來觀察p-HBDI類似物在模擬酸性環境下的變化結果,並且測量吸收、螢光放射光來探討其光物理性質。
To identify p-HBDI under the acidic condition, we used methylation method to simulate the protonated type of p-HBDI. We synthesize GFP chromophoric analogues n3-Bn and the methylation form of n3-Bn (n4-Bn). To discuss the property of photoisomerization, this two compounds was excited by UV lamp with 350nm wavelength. Furthermore, we used the integration of 1H-NMR to calculated the rate of thermal isomerization. To compare compounds n3-Bn and n4-Bn, we found that protic solvent or water could easily affected compound n4-Bn. Due to the positively charged nitrogen on n4-Bn,the amidine carbon on five-membered heterocyclic ring became electron deficient and it was attacked by nucleophile such as H2O. Moreover, we used 1H-NMR spectrum and the integration of 1H-NMR to calculated the rate of hydrolysis. These result could further to identify the fate of p-HBDI under the acidic condition.
[1] Shimomura, O.; Johnson, F. H.; Saiga, Y. J. Cell. Comp. Physiol. 1962, 59, 223–239.
[2] Tsien, R.Y. The Green Fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544.
[3] Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. C. Science. 1994, 263, 802–805.
[4] Heim R, Prasher DC, Tsien RY. Proc. Natl. Acad. Sci. USA 1994, 91, 12501-12504
[5] Moberg, A. The Nobel Prize in Chemistry 2008. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2008/press.html (2008/10/08)
[6] Morise, H.; Shimomura, O.; Johnson, F. H.; Winant, J. Biochemistry. 1974, 13, 2656–2662.
[7] Stafforst, T.; Diederichsen, U. Eur. J. Org. Chem. 2007, pp 899–911.
[8] Prachayasittikul, V.; Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Tansila, N.; Naenna, T. J. Comput. Chem. 2007, 28, 1275.
[9] Haiech, J.; Follenius-Wund, A.; Bourotte, M.; Schmitt, M.; Iyice, F.; Lami, H. ; Bourguignon, J. J.; Pigault, C. Biophys J. 2003, 85, 1839.
[10] Meech, S. R.; Litvinenko, K. L. ; Webber, N. M. J. Phys. Chem. A. 2003 , 107, 2616.
[11] Tonge, P. J.; He, X.; Bell, A. F. Org. Lett. 2002, 4, 1523–1536.
[12] Yang. J. S.; Huang, G. J.; Liu, Y. H.; Peng, S. M. Chem. Commun. 2008, 11, 1344–1346
[13] Wu, S. Prog. Chem. 2005, 17, 15–39.
[14] Hager, B.; Schwarzinger, B.; Falk, H. Monatshefte. für. Chemie. 2006, 137, 163–168.
[15] Nagy, A.; A.Málnási-Csizmadia,; B, Somogyi,; D, Lorinczy. Thermochim. Acta. 2004, 410, 161–163.
[16] Penna, T. C.; Ishii, M.; Junior, A. P.; Cholewa, O. Appl. Biochem. Biotechnol. 2004, 113-116, 469-483.
[17] Kneen, M.; Farinas, J.; Li, Y.; Verkman, A. S. Biophys. J. 1998, 74, 1591–1599.
[18] Alkaabi, K. M.; Yafea, A.; Ashraf, S. S. Appl. Biochem. Biotechnol. 2005, 126, 149–156.
[19] Lee, C. Y. Tetrahedron, 2012, 68, 5898-5907.
校內:2021-07-01公開