簡易檢索 / 詳目顯示

研究生: 陳周陽
Chen, Chou-Yang
論文名稱: 考量旅客服務價值的鐵路定價模型
A Railway Passenger Service Valuation Pricing Model
指導教授: 鄭永祥
Cheng, Yung-Hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 69
中文關鍵詞: 鐵路定價服務價值反向歸納法混合方法
外文關鍵詞: Railway Pricing, Service Valuation, Backward Induction, Hybrid Approach
相關次數: 點閱:126下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺灣高鐵的營運受限法令的規範,目前票價的訂定採用標準距離費率制度(per mile rates system),儘管臺灣高鐵實施許多不同的定價策略,但是票價只能在法令規範之範圍內進行訂定。良好的定價應該根據顧客眼中的價值,提供不同等級版本的商品以區隔不同的市場。然而目前鐵路業較少有研究探討如何進行各起訖站點(Origin- Destination)路線的定價,本研究將參考零售業單一產品定價及航空業的單一航線的定價模型,建構本研究的鐵路的定價模型。此模型以商務旅客及休閒旅客服的服務價值作為定價的主要依據,考量兩個售票時間內的兩類旅客購票行為,利用賽局理論建構三期的不合作賽局,採用反向歸納法的技巧進行求解。然而反向歸納法無法直接找出最佳的定價,因此將根據反向歸納法的原理,採用對基因演算法及單行法的混和方法進行求解。數據顯示不論在何種情境下,皆具有唯一的最佳定價方法,此結果是由於休閒旅客及商務旅客出現的時間點不同,可以利用價格區隔兩個售票時間購票的旅客類型,進而完全擷取休閒旅客其商務旅客購票的消費者剩餘,使業者達到營收最大。

    Taiwan High Speed Rail (THSR) is restricted on its operation by the regulations, the current ticket fare is set by the per mile rates system. Although THSR has implemented many different pricing strategies, fares can only be priced within upper 20% due to the regulations. A good pricing should consider customer’s valuation to provide different level versions of products for market segmentation. However, there are few studies on pricing origin-destination routes in railway. This study will establish a pricing model in railway through reviewing the pricing models in retail and aviation. The main basis of pricing in this model is business travelers’ and leisure travelers’ service valuation. This study can construct a three-stage non-cooperative game to take into account the buying behaviour of these two types of travelers in two selling period and use backward induction to solve, however, it cannot directly find the optimal pricing. Therefore, a hybrid method is used by genetic algorithm and simplex method based on backward induction to solve the game. The numerical results show that there is the same unique optimal pricing strategy, regardless of any circumstances; due to leisure travelers and business travelers appear at different time in two selling period. As a result, THSR can use lower fare in the early selling period to attract leisure travelers and higher fare in the later selling period to attract business travelers and price out leisure travelers. Therefore, THSR can extract full consumer surplus of two types of travelers and maximize revenue.

    摘 要 I 誌 謝 VIII 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究對象與範圍 3 1.4 研究流程 4 第二章 文獻回顧 6 2.1 台灣高鐵定價歷史 6 2.1.1 台灣高鐵全票費率訂定及調整 6 2.1.2 台灣高鐵歷年費率調整 7 2.1.3 台灣高鐵票價產品 8 2.2 營收管理 11 2.2.1 動態定價 11 2.2.2 價格歧視 12 2.3 定價模型應用 15 2.3.1 零售業 15 2.3.2 航空業 16 2.3.3 鐵路業 18 2.4 模型演算法 20 2.4.1 基因演算法 20 2.4.2 單行法 23 2.5 小結 25 第三章 研究方法 26 3.1 模型設定 26 3.1.1 符號說明 26 3.1.2 模型假設 27 3.1.3 模型決策順序 29 3.2 子賽局均衡分析 30 3.2.1 子賽局均衡推導 30 3.3 小結 33 第四章 模型演算法 34 4.1 混合方法 34 4.1.1 基因演算法流程 36 4.1.2 單行法流程 41 4.2 小結 44 第五章 數值分析 45 5.1 數值測試設定 45 5.2 數值測試結果與分析 46 5.3 混和演算法記憶空間分析 50 5.4 小結 52 第六章 結論與建議 53 6.1 研究結果與發現 53 6.2 研究貢獻 55 6.3 研究限制與未來研究方向 55 參考文獻 57 附錄:情境模擬資料設定與結果 62

    1. 台灣高鐵網站。
    2. 交通部高速鐵路工程局網站。
    3. 林奕伶(譯)(2013),訂價背後的心理學(L. Caldwell),台北市:大是文化(原著出版年:2012)。
    4. 張有恆(2013),現代運輸學(三版),台北市:華泰文化
    5. 陳建華、高自友(2005),合理制定鐵路旅客票價的優化方法,鐵道學報,27(4), 16-19。
    6. 郭家旻(2012),探討不同退費策略下對鐵路業者營收影響之研究,國立成功大學交通管理科學研究所碩士論文。
    7. 蘇瑩瑩(2014),隨機團體需求之定位限制,國立成功大學交通管理科學研究所碩士論文。
    8. Bazaraa, M. S., Jarvis, J. J., & Sherali, H. D. (2011). Linear programming and network flows. John Wiley & Sons.
    9. Beasley, D., Martin, R. R., & Bull, D. R. (1993). An overview of genetic algorithms: Part 1. Fundamentals. University computing, 15, 58-58.
    10. Bharill, R., & Rangaraj, N. (2008). Revenue management in railway operations: A study of the Rajdhani Express, Indian Railways. Transportation Research Part A: Policy and Practice, 42(9), 1195-1207.
    11. Bingfeng, S. I., & Ziyou, G. A. O. (2007). Optimal model for passenger transport pricing under the condition of market competition. Journal of Transportation Systems Engineering and Information Technology, 7(1), 72-78.
    12. Bitran, G., & Caldentey, R. (2003). An overview of pricing models for revenue management. Manufacturing & Service Operations Management, 5(3), 203-229.
    13. Bland, R. G. (1977). New finite pivoting rules for the simplex method. Mathematics of operations Research, 2(2), 103-107.
    14. Botimer, T. C., & Belobaba, P. P. (1999). Airline pricing and fare product differentiation: A new theoretical framework. Journal of the Operational Research Society, 50(11), 1085-1097.
    15. Briginshaw, D. (2013). Ouigo leads the way in low-fare high-speed rail, International Railway Journal, Retrieved (2014/10/02) form
    http://www.railjournal.com/index.php/high-speed/ouigo-leads-the-way-in-low-fare-high-speed-rail.html
    16. Chen, Y., & Xie, J. (2008). Online consumer review: Word-of-mouth as a new element of marketing communication mix. Management science, 54(3), 477-491.
    17. Chiambaretto, P., & Fernandez, A. S. (2014). Transferring low-cost marketing practices from air to rail services: The Ouigo case. Research in Transportation Business & Management, 10, 40-44.
    18. Choi, S., & Mattila, A. S. (2004). Hotel revenue management and its impact on customers’ perceptions of fairness. Journal of Revenue and pricing Management, 2(4), 303-314.
    19. Côté, J. P., Marcotte, P., & Savard, G. (2003). A bilevel modelling approach to pricing and fare optimisation in the airline industry. Journal of Revenue and Pricing Management, 2(1), 23-36.
    20. Dantzig, G. B. (1998). Linear programming and extensions. Princeton university press.
    21. Desiraju, R., & Shugan, S. M. (1999). Strategic service pricing and yield management. The Journal of Marketing, 44-56.
    22. Fay, S., & Xie, J. (2010). The economics of buyer uncertainty: Advance selling vs. probabilistic selling. Marketing Science, 29(6), 1040-1057.
    23. Geetha, T., Mahalakshmi, K., Ummusalma, I., & Kumaran, K. M. (2013). An Observational Analysis of Genetic Operators. International Journal of Computer Applications, 63(18).
    24. Graham, R. J., Garrow, L. A., & Leonard, J. D. (2010). Business travelers’ ticketing, refund, and exchange behavior. Journal of Air Transport Management, 16(4), 196-201.
    25. Guo, L. (2009). Service cancellation and competitive refund policy. Marketing Science, 28(5), 901-917.
    26. Haley, R. I. (1968). Benefit segmentation: A decision-oriented research tool. The Journal of Marketing, 30-35.
    27. Hillier, F. S., & Lieberman, G. J. Introdction to operations research. McGraw-Hill.
    28. Iliescu, D. C., Garrow, L. A., & Parker, R. A. (2008). A hazard model of US airline passengers’ refund and exchange behavior. Transportation Research Part B: Methodological, 2(3), 229-242
    29. Kimes, S. E. (1989). Yield management: a tool for capacity-considered service firms. Journal of operations management, 8(4), 348-363.
    30. Lazarev, J. (2013). The welfare effects of intertemporal price discrimination: an empirical analysis of airline pricing in US monopoly markets. New York University.
    31. Morrison, S. A., & Winston, C. (1990). The dynamics of airline pricing and competition. The American Economic Review, 80(2), 389-393.
    32. Nuzzolo, A., Crisalli, U., & Gangemi, F. (2000). A behavioural choice model for the evaluation of railway supply and pricing policies. Transportation Research Part A: Policy and Practice, 34(5), 395-404.
    33. Pels, E., & Rietveld, P. (2004). Airline pricing behaviour in the London–Paris market. Journal of Air Transport Management, 10(4), 277-281.
    34. Shugan, S. M., & Xie, J. (2000). Advance pricing of services and other implications of separating purchase and consumption. Journal of Service Research,2(3), 227-239.
    35. Shugan, S. M., & Xie, J. (2004). Advance selling for services. California Management Review, 46(3), 37-54.
    36. Shugan, S. M., & Xie, J. (2005). Advance-selling as a competitive marketing tool. International Journal of Research in Marketing, 22(3), 351-373.
    37. Stavins, J. (2001). Price discrimination in the airline market: The effect of market concentration. Review of Economics and Statistics, 83(1), 200-202.
    38. Stigler, G. J. (1952). The theory of price. Retrieved from (2014/08/07)
    http://14.139.56.90/handle/1/2024167
    39. Su, M., Zheng, X., & Sun, L. (2014). Coupon trading and its impacts on consumer purchase and firm profits. Journal of Retailing, 90(1), 40-61.
    40. Suzuki, Y., Crum, M. R., & Audino, M. J. (2004). Airport leakage and airline pricing strategy in single-airport regions. Transportation Research Part E: Logistics and Transportation Review, 40(1), 19-37.
    41. Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice model of consumer behavior. Management Science, 50(1), 15-33.
    42. Talluri, K. T., & Van Ryzin, G. J. (2006). The theory and practice of revenue management. Springer Science & Business Media.
    43. Van Vliet, V. (2011). Service Marketing mix-7 P’s. Retrieved (2015/05/01) from ToolsHero
    http://www.toolshero.com/marketing/service-marketing-mix-7ps/
    44. Van Vuuren, D. (2002). Optimal pricing in railway passenger transport: theory and practice in The Netherlands. Transport Policy, 9(2), 95-106.
    45. Xie, J., & Gerstner, E. (2007). Service escape: Profiting from customer cancellations. Marketing Science, 26(1), 18-30.
    46. Xie, J., & Shugan, S. M. (2001). Electronic tickets, smart cards, and online prepayments: When and how to advance sell. Marketing Science, 20(3), 219-243.
    47. Xueyu, Z., & Jiaqi, Y. (2013). Research on the Bi-level programming model for ticket fare pricing of urban rail transit based on particle swarm optimization algorithm. Procedia-Social and Behavioral Sciences, 96, 633-642.
    48. Yen, J., Liao, J. C., Lee, B., & Randolph, D. (1998). A hybrid approach to modeling metabolic systems using a genetic algorithm and simplex method. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 28(2), 173-191.

    無法下載圖示 校內:2022-02-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE