簡易檢索 / 詳目顯示

研究生: 黃耀廷
Huang, Yao-Ting
論文名稱: 多噴頭霧化器在空蝕共振效應下之霧化機制及特性研究
Mechanism and Performance of Multi-Apertured under Cavitation Resonance Effect
指導教授: 王覺寬
Wang, Muh-Rong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 134
中文關鍵詞: 多噴頭單流體空蝕共振腔霧化器
外文關鍵詞: Multi-Apertured, Atomizers, Cavitation, Resonance
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究探討單流體微型噴嘴之霧化機制及其霧化特性,微型噴頭孔口直徑為100 μm,共振腔高度為400 μm,共振腔直徑為3000 μm,工作流體為純水。研究項目包括多孔噴頭微液柱之暫態演變過程及其穩態破裂過程,並探討微液柱在高壓下,空蝕共振效應對其霧化特性之影響。本研究以IDT高速攝影機拍攝微液膜及微液柱在共振效應下之演變過程,以Malvern RT-Sizer粒徑分析儀量測噴霧粒度及粒度分佈。研究結果顯示,多孔噴頭微液柱由於微流體表面張力之作用甚大,液體先在個別微噴嘴出口處形成半月型之液膜,此等液膜隨時間逐漸成長,從半月型之液膜演變為球狀體,由於液體表面張力與慣性力之平衡,個別球狀體亦逐漸成長,乃至與鄰近之球狀體相互結合,進一步成為錐狀體。當液體慣性力持續增加,錐狀體逐漸形成個別分立之不穩定噴射液柱,並在下游處相互纏繞,形成鎖鍊形噴流。在相同液體壓力下,當噴頭之孔數增加,由於鄰近噴流間之交互作用,會增強噴流之不穩定能量,故液柱暫態演變過程變長。研究結果亦顯示,微管流之液柱動態特性隨液體雷諾數而變。當雷諾數Re < 152時,雙孔噴頭之液柱為雙股之鎖鏈型態,單孔噴頭之液柱則呈現穩定的模態;當雷諾數Re > 152時,單孔及雙孔噴頭之液柱均為穩定模態;當液體雷諾數為Re = 230時,單孔與雙孔的液柱,皆呈現軸對稱不穩定模態。當雷諾數Re > 230時,雙孔噴頭的液柱會因交互作用,開始出現螺旋不穩定模態,單孔噴頭則在雷諾數Re > 275時才開始出現螺旋不穩定模態,並與軸對稱不穩定模態同時存在。當雷諾數Re > 350時,雙孔噴頭之液柱為螺旋不穩定模態所主導,單孔噴頭之液柱則在雷諾數Re > 617時液柱才會為螺旋不穩定模態所主導。顯然多孔噴頭液柱間之交互作用具有激發不穩定模態之效應。研究結果亦顯示,隨噴頭孔數及液體出口雷諾數之變化,空蝕數皆在0.5以下。根據文獻顯示,當空蝕數在0.94以下時,在腔體中會產生空蝕現象,顯示在本研究之實驗條件下,腔體中有空蝕現象之產生。實驗結果發現噴霧平均粒度與噴嘴霧化效率會隨空蝕數降低而減小,當噴頭孔徑為100 μm時,噴射壓力從50bar 遞增至125 bar,則噴霧平均粒徑從11.06 μm遞減至6.29 μm。當噴射壓力為125 bar時,若噴頭孔數為雙孔、四孔及六孔時,噴霧平均粒徑分別為7.22 μm、8.49 μm、9.27 μm,顯示多孔噴霧間因為粒子碰撞結合現象,呈現噴霧粒徑隨噴頭孔數而遞增之現象。噴霧產生量則隨噴頭孔數之遞增而線性增加,當噴射壓力為125 bar時,噴頭孔數為單孔、雙孔、四孔及六孔之噴霧產生率分別為3.72 kg/hr、7.33 kg/hr、15.73 kg/hr、及24.08 kg/hr,顯示單流體微噴嘴可以產生10微米級之大流量噴霧,可以因應產業上大流量細微噴霧粒子之需求。

    Abstract
    Enhancement of atomization performance of pressure atomizer with resonance effects in a multi-apertured nozzle are investigated in this research. The nozzle is installed with disposable orifice plates for different applications. The orifice plates are designed with single and multiple orifices having diameter and pitch of 100 μm and 2000 μm, respectively. The diameter and height of the resonator are 3000 μm and 400 μm, respectively. The particle size of the spray is measured by Malven RT-sizer. The evolution of the multi-apertured micro-jet during the transient break-up processes was studied using IDT-high speed video camera. Results show that the liquids first formed a meniscus around the outlet of the orifice because of the strong effects of the surface tension associated the micro-jet. The meniscus was transformed to the spherical shape as the inertia of the liquid was increased with time. The spherical shape further grew up based on the balance between inertia force and surface tension and became a conical shape near the orifices. The liquid jets were quite unsteady and finally became a chain of liquid jet in the downstream. The interactions between the liquid jets were observed as the number of the orifice was increased. The liquids from different orifices were merged together during the transient processes. However, they were separated each other as the inertia of the liquid jets were further increased. Results also showed the evolution of the instability modes of the liquid jets as the Reynolds number increased. In the case of the nozzle with double orifices, the liquid jets became a series of chain modes due to the interaction between jets as Re<152. It became relatively steady as Re>152.The instability modes of the both liquid jets further changed to the axi-symmetric mode as Re= 230. Both of the axi-symmetric and helical modes appeared as Re>230. The instability of liquid jets was further transformed to the helical mode as Re>350. As comparison, for the nozzle with single orifice, both of the axi-symmetric and helical modes appeared as Re>275. It transformed to pure helical mode as Re>617. It is concluded that the interactions between adjacent jets enhanced the unsteadiness of the multi-apertured liquid jets. It is also found that the cavitation numbers of the flow under the test conditions employed in this research were all under 0.5. As reported in the literature, the cavitation phenomenon appeared in the flow as the Cavitation number was less than 0.94. Hence it is expected that cavitation occurred in the nozzles with various orifice plates. Results showed that the particle size and the atomization efficiency were decreased as the Cavitation number was reduced. It was also found that the mean particle size of the spray decreased from 11.06 μm to 6.29 μm as the injection pressure was increased from 50 bar to 125 bar in a test using a single orifice plate. The particle size was further increased as the number of the orifices was increased. It turns out that the mean particle size and spray production rate increased from 7.22 μm to 9.27 μm and 3.72 kg/hr to 24.08 kg/hr, respectively, as the number of orifice was increased from two to six. It indicates that the new atomizer performs better as comparing to the traditional diesel-type atomizers.

    目 錄 中文摘要 英文摘要 致謝 目錄 Ⅰ 表目錄 Ⅲ 圖目錄 Ⅳ 符號說明 Ⅷ 第一章 緒論 1 1-1 簡介 1 1-2 文獻回顧 1 1-2-1霧化之原理 1 1-2-2液體碎化過程 3 1-2-3噴霧流場中之空氣動力現象 7 1-2-4噴霧流場中液滴破裂模式 9 1-2-5壓力式霧化器 11 1-2-6壓力式空蝕霧化器 16 1-3研究動機與目的 17 第二章 實驗設備及儀器 39 2-1 實驗設備 39 2-1-1噴嘴性能測試台架 39 2-1-2高壓液體供應系統 39 2-1-3抽氣整流系統 40 2-1-4霧化裝置 40 2-2 量測儀器 41 2-2-1 RT-Sizer粒徑分析儀 41 2-2-2 RT-Sizer粒徑分析儀校正記錄 42 2-2-3攝影器材及影像處理系統 43 2-2-4影像擷取系統 43 2-3主要量測參數 44 第三章 實驗步驟及方法 55 3-1 實驗量測條件 55 3-2 流量的量測 55 3-3 微管流之視流觀察 56 3-4 RT-Sizer粒徑分析儀的量測 56 3-5 數據取樣與分析 58 第四章 結果與討論 61 4-1 壓力式微管流液柱噴射之視流實驗 61 4-1-1 微管流液柱噴射之暫態演變過程 61 4-1-2微管流之出口視流觀測 69 4-2 具共振效應之高壓力式微型噴嘴霧化特性 71 4-2-1 噴嘴孔數變化對霧化特性之影響 72 4-2-1-1噴嘴孔數變化對噴霧產生率之影響 72 4-2-1-2噴嘴孔數變化對雷諾數之影響 73 4-2-1-3噴嘴孔數變化對空蝕數之影響 74 4-2-1-4噴嘴孔數變化對噴霧平均粒徑之影響 75 4-2-1-5噴頭孔數變化對V10-(%)之水粒體積比之影響 76 4-2-1-6噴嘴孔數變化對噴嘴霧化效率之影響 77 第五章 結論 …125 參考文獻 128 自述.... 134 134

    參考文獻
    1. 古晉光, 加濕工程應用手冊, 翰寧股份有限公司, pp.10-28, 2000.
    2. A. H. Lefebvre, “Gas Turbine Combustion,” Chapter10, Hemisphere Publishing Corporation, New York, 1983.
    3. R. A. Castleman Jr., “The Mechanism of the Atomization of Liquids,” Burean of Standards Journal of Research, Vol.6, pp.369-376, 1930.
    4. N. Dombrowski and W. R. Johns, ”The Aerodynamic Instability and Disintegration of Viscous Liquid Sheets,” Chem. Eng. Sci., Vol.18, pp.203-214, 1963.
    5. B. E. Stapper, W. A. Sowa and G. S. Samuelsen, “An Experimental Study of the Effects of Liquid Properties on the Breakup of a Two-dimensional Liquid Sheet,” ASME, Journal of Engineering for Gas Turbines and Power, Vol.114, pp.39-45, 1992.
    6. C.H. Lee, Rolf D. Reitz, “An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream”, International Journal of Multiphase Flow 26(2000) 229-244.
    7. R. P. Fraser, “Liquid Fuel Atomization,” Sixth Symposium (International) on Combustion, Rein-hold, New York, pp.687-701, 1957.
    8. M.C. Butler Ellis and C.R. Tuck, “ How Adjuvants Influence Spray Formation with Different Hydraulic Nozzle, “ Crop Protection, Vol.18, pp.101-109, 1999.
    9. P.C.H Miller, M.C. Butler Ellis, “Effects of formulation on spray nozzle performance for applications from ground-based boom sprayers”, Crop Protection 19 (2000) 609-615.
    10. M.C. Butler Ellis, C.R. Tuck and P,C.H. Miller, “ How Surface Tension of Surfactant Solution Influences the Characteristics of Sprays Produced by Hydraulic Noozle Used for Pesticide Application, “ Colloids and Surface A: Physicochemical and Engineering Aspects, Vol. 180, pp.267-276, 2001.
    11. G. D. Crapper, N. Dombrowski, W. P. Jepson and G. A. D. Pyott, ”A Note on the Growth of Kelvin-Helmholtz Waves on Thin Liquid Sheets,” J. Fluid Mech., Vol.57, part 4, pp.671-672, 1973.
    12. A. H. Lefebvre, “Atomization and Sprays,” Hemisphere Publishing Corporation, New York, 1989.
    13. H. C. Simmons, “The Atomization of Liquid, Principles and Methods,” Parker Hannifin Report No.8, pp.61-92, 1982.
    14. 許耀仁, “氣衝式平面噴嘴液膜霧化特性之研究,” 國立成功大學碩士論文, 1993.
    15. 高韶壕, “微型噴嘴單束噴霧流在側吹下之粒子分布,” 國立成功大學碩士論文, 2003.
    16. F.R. Zhang, S. Wakabayashi and N. Tokuoka, “ The Spray Structure from Swirl Atomizer (1st Report, General Characteristics and Structure of A Spray of Swirl Atomizer), ” Nippon Kikai Gakkai Ronbunshu, B Hen/Transactions of the Japan Society of Mechanical Engineerings, Part B, Vol. 60, No. 570, pp. 675-680, 1994.
    17. J.S. Chin, D Nickolaus and A.H. Lefebvre, “ Influence of Distance on the Spray Characteristics of Pressure-Swirl Atomizers, “ ASME, Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 219-224, 1986.
    18. 趙金容,“相差都卜勒粒子分析儀應用於燃油噴嘴特性之研究”, 國立成功大學碩士論文, 1988。
    19. 蔡清洲, “漩渦噴流中氣液兩相交互作用實驗分析”, 國立成功大學碩士論文, 1989。
    20. 洪嘉宏,”中空錐形噴霧中連續相及離散相之動力特性研究“, 國立成功大學博士論文, 1991。
    21. 楊坤和,“研究型氣助式噴霧特性研究”, 國立成功大學博士論文, 1992。
    22. 賴維祥,“噴霧發展過程中粒子之輸送現象及其紊流條調制之研究”, 國立成功大學博士論文, 1995。
    23. 徐明生,“雙流體式平面噴嘴霧化特性之研究”, 國立成功大學碩士論文, 1995。
    24. 曾安康,“超微噴嘴液滴在噴流中之演變過程”, 國立成功大學碩士論文, 2001。
    25. C.K. Chiang, J.Y. Poo, and T.H. Lin “ Number of Result Drops In Binary Liquid Drop Collision “ Picast,Cofference Proceedings Vol. II, pp. 577-589, 1994.
    26. J.D. McTaggart and R. List, “ Collision and Breakup of Water Drops at Terminal Velocity, “ J. of the Atmospheric Sciences, col. 32, pp. 1401-1411.
    27. J.R. Adam, N.R. Lindblad and C.D. Hendricks, “ The Collision, Coalescence, and Disruption of Water Droplets, “ J. Appl. Phys. , Vol. 39, pp. 5173-5180, 1968.
    28. A.M. Podvysotsky and A.A. Shraiber, “ Coalescence and Breakup of Drops in Two-Phase Flows, “ Imt. J. Multiphase Flow, Vol. 10, No. 2, pp. 195-209, 1984.
    29. N. Ashgrize and P. Grivi, “ Coalescence Collision of Fuel Droplets, “ AIAA-87-0135.
    30. Q.V. Nguyen, R.H. Rangle and D. Dunn-Rankin, “ Measurement and Prediction of Trajectories and Collision of Droplets, “ Int. J. Multiphase Flow, Vol. 10, No. 2, pp. 159-177, 1991.
    31. C.HAAS Frederick, “Stability of Droplets Suddenly Exposed to a High Velocity Gas Stream, “ A.I.CH.E. Journal Page, 920, November, 1964.
    32. A.R. Jones, “ Design Optimization of a Large Pressure-Jet Atomizer for Power Plant,” Proceedings of the 2nd International Conference on Liquid Atomization and Sprays, Madison, Wis. , pp. 181-185, 1982.
    33. H.C. Simmons and C.F. Harding, “ Some Effects on Using Water as a Test Fluid in Fuel Noozle Spray Analysis, “ ASME Paper 80-GT-90, 1980.
    34. H.C. Simmons, “ The Prediction of Sauter Mean Diameter for Gas Turbine Fuel Nozzles of Different Types, “ ASME, Journal of Engineering for Power, Vol. 102, pp. 646-652, 1980.
    35. J.B. Kendy, “ High Weber Number SMD Correlations for Pressure Atomizers, “ Transactions of ASME Journal of Engineering for Gas Turbines and Power, Vol. 108, pp. 191-195, 1986.
    36. X.F. Wang and A.H. Lefebvre, “ Mean Drop Sizes from Pressure Swirl Nozzles, “ Journal of Propulsion and Power , Vol. 3, No. 1, pp. 11-18, 1987.
    37. S.M. De Corso, “ Effect of Ambient and Fuel Pressure on Spray Drop Size, “ ASME, Journal of Engineering for Power, Vol. 82, pp. 10, 1960.
    38. S.M. De Corso and G.A. Kemeny, “ Effect of Ambient and Fuel Pressure on Nozzle Spray Angle, “ ASME, Journal of Engineering for Power, Vol. 79, No. 3, pp. 607-615, 1957.
    39. J. Ortman and A.H. Lefebvre, “ Fuel Distributions from Pressure Swirl Atomizers, “ Journal of Propulsion and Power, Vol. 1, No. 1, pp.11-15, 1985.
    40. M.M. Elkotb, N.M. Rafat and M.A. Hanna, “ The Influence of Swirl Atomizer Geometry on the Atomization Performance, “ Proceedings of the 1st International Conference on Liquid Atomization and Spray System, Tokyo, pp. 109-115, 1978.
    41. M. Suyari and A.H. Lefebvre, “ Film Thickness Mesaurements in A Simplex Swirl Atomizer, “ Journal of Propulsion and Power, Vol. 2, No. 6, pp. 528-533, 1986.
    42. P.S. Kutty, M.V. Narasimhan and K. Narayanaswamy, “ Design and Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Chamber Atomizers, “ Proceedings of 1st International Conference on Liquid Atomization and Spray Systems, pp. 93-100, 1978.
    43. K.R. Babu, M.V. Narasimhan and K. Narayanaswamy, “ Correlation for Prediction of Discharge Rate, Cone Angle and Aircore Diameter of Swirl Spray Atomizers, “ Proceedings of 2nd International Conference on Liquid Atomizer and Spray Systems, pp. 91-97, 1982.
    44. W.C. Nieuwkamp, “ Flow Analysis of a Hoolow Cone Nozzle With Potential Flow Theory, “ Proceedings of 3rd International Conference on Liquid Atomization and Spray Systems, pp. IIIC/1/1-9, 1985.
    45. N.K. Rizk and A.H. L EFEBVRE, “ Internal Flow Characteristics of Simplex Swirl Atomization, “ AIAA-84-0124, 1984.
    46. 林富祈,“壓力式渦漩霧化器噴霧錐角控制之研究”, 國立成功大學碩士論文, 1997.
    47. K. Ramamurthi and T.John Tharakan, “ Atomization Characteristics of Swirled Annular Liquid Sheets, “ ICLASS-“97, 1997.
    48. M.R. Wang, F.C. Lin, M.S. Sheu and C.K Wang, “ Control of Spray Angle in a Pressure Swirling Atomizer, ” Trans. Of the Aeronautical and Astronautical Society of ROC, Vol. 31, No. 2, pp. 99-107,1999.
    49. 薛勇瑋,“具共振效應之壓力式微型噴嘴霧化特性”, 國立成功大學碩士論文, 2006。
    50. X. Chengliang, “Prospects of Water Jet Technology—And Discussion on Technological Innovation in the Field ofSafety Engineering Projects” China Safety Science Journal (CSSJ), 2000 Vol.10 No.1 P.48-52.
    51. Cheng Xiaobei, H. Ronghua, W. Zhi, Q. Shenguan and Z. Meilin,“The Study on Injector Nozzle Cavitation Atomization in a Diesel Engine” Vol. 23 No.2 P.60-64, 2002.
    52. A. Sou, M.M. Ilham, S. Hosokawa and A. Tomiyama, “Effects Of Cavitation In a Nozzle On a Liquid Jet Atomization” CD-ROM ICLASS06-043, 2006.
    53. N. Tamaki1, Y. Ishida and A. Higashi, “Effects of Ambient Pressures on Atomization of Spray and Application to Actual Diesel Nozzle”CD-ROM ICLASS06-011, 2006.
    54. C. Arcoumanis, M. Gavaises, H. Flora, and H. Roth, “Visulization of Cavitation in Diesel Engine Injectors,” Mec. Ind. (2001) 2, pp375-381.
    55. C. Badock, R. Wirth, A. Fath and A. Leipertz, “Investigation of cavitation in real size diesel injection nozzles,” International Journal of Heat and Fluid Flow, 20, (1999), pp.538-544.
    56. Masaaki Kubo, Takashi Araki and Shuji Kimura, ” Internal flow analysis of nozzles for DI diesel engines using acavitation model,” JSAE Review 24 (2003) 255–261
    57. 小栗富士雄原著,”標準機械設計圖表便覽,” 台隆書店出版, 1972。

    下載圖示 校內:立即公開
    校外:2007-08-01公開
    QR CODE