| 研究生: |
張璿齊 Chang, Jui-Chi |
|---|---|
| 論文名稱: |
基於頻域解析光學開關之超短脈衝補償於雙光子激發螢光顯微術 Two-photon Excited Fluorescence Microscopy with Ultrashort Pulse Compression Based on Frequency-resolved Optical Gating |
| 指導教授: |
張家源
Chang, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 多光子激發螢光 、二階群色散 、干涉式自相關 、頻域解析光學開關 、菱鏡式雷射脈衝壓縮 |
| 外文關鍵詞: | multiphoton excitation fluorescence microscopy, group delay dispersion, frequency resolved optical gating, pulse compression, interferometric autocorrelation |
| 相關次數: | 點閱:174 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多光子激發螢光顯微術(multiphoton excited fluorescence microscopy,MPEFM)能夠提供良好的空間解析之激發能力,並可重建三維螢光影像,並且透過雷射脈衝時域能量集中的特性,可透過低平均功率之高瞬時能量,以不傷害樣品的情況激發其螢光訊號,能夠有效降低樣品損壞的風險。然而當雷射脈衝經過光學元件以及樣品時,會因雷射脈衝不同波長的相位變化產生二階群色散(group delay dispersion,GDD)而降低雷射脈衝之時域能量集中效率,使其無法達到理想的多光子激發螢光效率,因此需發展一套能夠同時量測雷射脈衝的相位變化,並補償其相位變化以最佳化其時域能量集中之特性。
本論文著重於發展雷射脈衝量測系統,包含干涉式自相關量測(interferometric autocorrelation,FRAC)以及頻率解析光學開關(frequency resolved optical gating,FROG)等,FRAC主要為透過量測雷射分光後在不同光程差疊合激發的二倍頻訊號之強度曲線變化,並推得其脈衝寬度;而FROG主要為透過量測雷射在不同光程差時的自相關頻譜,搭配其相位回推演算法可收斂出雷射脈衝的電場資訊,其中我們透過修改FROG之相位回推演算法可提升約1.2倍的FROG分析速度與約1.7倍的收斂穩定性,並且在實際應用於多光子激發螢光顯微系統時將FROG量測系統結合菱鏡壓縮系統(prism-based compressor)以及PI控制理論,可實現自動量測雷射脈衝並補償其光學時域色散的整合系統,搭配PI控制器可實現2~3步收斂的快速補償效果,最後透過多光子激發螢光影像觀察其影像強度的變化,能夠提升約1.6倍的螢光激發效率。
In this thesis, we have introduced a self-built multiphoton excitation fluorescence microscopy (MPEFM), which can be used to measure and reconstruct the 3-dimensional resolved image to biotissue in vivo. A fast and simple dispersion scanner GRENOUILLE and dispersion estimation method with fast and highly stable computation timing are proposed. The optical dispersion information is directly estimated based on the frequency-resolved optical gating (FROG) trace without the requirement of the pulse-retrieval iterative algorithm. Instead of using the iterative reconstruction algorithm which relies on the initial electrical filed assumption, the group delay dispersion (GDD) can be directly determined based on the marginals of frequency and delay which are related to the laser spectrum and intensity autocorrelation. The estimated GDD is confirmed with the spectral phase distribution of the reconstructed electrical field based on the principal component generalized projections algorithm (PCGPA) for FROG. The fast and direct estimation method can improve the computation time over 13 times faster than traditional iterative algorithm. The fast and direct estimation with stable computation time is suitable for providing the dispersion as feedback information in a control closed-loop for ultrafast pulse compression. The fast estimated GDD value is sent to the linear control system consists of the prism-based compressor and PI (proportional-integral) controller. The dispersion is shown to be compensated within three control loops. Finally, we apply the compensated pulse into MPEFM to show the fluorescence images quality improvement of both the intensity and contrast after the dispersion is compensated.
1. I. Mirza, N. M. Bulgakova, J. Tomáštík, V. Michálek, O. Haderka, L. Fekete, and T. Mocek, “Ultrashort pulse laser ablation of dielectrics: Thresholds, mechanisms, role of breakdown,” Sci. Rep. 6, 39133 (2016).
2. P. J T. Wang and C. Xu, “Three-photon neuronal imaging in deep mouse brain,” Optica 7(8), 947-960 (2020).
3. W. R. Zipfel, R. M. Williams ,and W. W. Webb,” Nonlinear magic: multiphoton microscopy in the biosciences,” Nat Biotechnol. 21(11), 1369-1377 (2003).
4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075 - 7080 (2003).
5. S. V. Plotnikov et al., “Measurement of muscle disease by quantitative second-harmonic generation imaging,” J. Biomed. Opt., 13(4), 044018 (2008).
6. M. Göppert‐Mayer, “Elementary processes with two quantum transitions,” Ann. Phys. 18(7-8), 466-479 (2009).
7. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science. 248(4951), 73-76 (1990).
8. H. P. Weber, “Method for Pulsewidth Measurement of Ultrashort Light Pulses Generated by Phase-Locked Lasers using Nonlinear Optics,” J. Appl. Phys. 38(5), 2231-2234 (1967).
9. J. A. Armstrong, “MEASUREMENT OF PICOSECOND LASER PULSE WIDTHS,” Appl. Phys. Lett. 10(1), 1618 (1967).
10. J-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, “Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy,” Appl. Opt. 24(9), 1270-1282 (1985).
11. D. A. Bender and M. Sheik-Bahae, “Modified spectrum autointerferometric correlation (MOSAIC) for single-shot pulse characterization,” Opt. Lett. 32(19), 2822-2824 (2007).
12. D. A. Bender, J. W. Nicholson, and M. Sheik-Bahae, “Ultrashort laser pulse characterization using modified spectrum auto-interferometric correlation (MOSAIC),” Opt. Express. 16(16), 11782-11894(2008).
13. J.-Ho Chung, and A. M. Weiner, “Ambiguity of Ultrashort Pulse Shapes Retrieved From the Intensity Autocorrelation and the Power Spectrum,” IEEE J. Sel. Top. Quant. Electron. 7(4), 656-666 (2001).
14. B. Yellampalle, K. Kim, and A. J. Taylor, “Amplitude ambiguities in second-harmonic generation frequency-resolved optical gating,” Opt. Lett. 32(24), 3558-3560 (2007).
15. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23(10), 792-794 (1998).
16. M. Miranda, T. Fordell, C. Arnold, A. L’Huillier, and H. Crespo, “Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges,” Opt. Express. 20(1), 688-697 (2012)
17. M. Rhodes and R. Trebino, “Coherent Artifact Study of Multiphoton Intrapulse Interference Phase Scan,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper JTu5A.15.
18. R. Trebino and D. J. Kane, “Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating,” J. Opt. Soc. Am. A 10(5), 1101-1111 (1993).
19. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Kluwer Academic, 2002).
20. A. S. Johnson, E. B. Amuah1, C. Brahms, and S. Wall, “Measurement of 10 fs pulses across the entire Visible to Near-Infrared Spectral Range,” Sci. Rep. 10, 4690 (2020).
21. P. André, C. P. João, S. Künzel, J. Koliyadu, P. André, M. Fajardo, “Development of a compact and portable SHG FROG,” Proc. SPIE 11207, 112072N (2019).
22. E. Naghdi, E. Sadeghi, H. Nadgaran, M. Kheyrollahi, and M. Mousavi, “Experimental focusing in the characterization of ultrashort chirped pulses in a simplified device,” Laser. Phys. 30, 085301 (2020).
23. R. Jafari, T. Jones, and R. Trebino, “100% reliable algorithm for second-harmonic generation frequency-resolved optical gating,” Opt. Express. 27(3), 2112-2124 (2019).
24. Y. Li, Y. Chen, W. Li, P. Wang,B. Shao, Y. Peng, and Y. Leng. “Accurate characterization of mid-infrared ultrashort pulse based on second-harmonic-generation frequency-resolved optical gating”. Opt. Laser Technol. 120, 105671 (2019)
25. M. Skorsetz, P. Artal, and J. M. Bueno, “Improved multiphoton imaging in biological samples by using variable pulse compression and wavefront assessment,” Opt. Commun. 422, 44-51(2017).
26. D. J. Kane and R. Trebino, “Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating,” Opt. Lett. 18(10), 823–825 (1993).
27. P. O’Shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified ultrashort pulse measurement,” Opt. Lett. 26(12), 932–934 (2001).
28. S. Akturk, X. Gu, M. Kimmel, and Rick Trebino, “Extremely simple single-prism ultrashort-pulse compressor,” Opt. Express. 14(21), 10101-10108 (2006).
29. G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922-927 (2004).
30. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane,G. Mourou, and H. Kapteyn, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493-495 (1999).
31. HyperPhysics, Rayleigh scattering, from:
http://hyperphysics.phy-astr.gsu.edu/hbase/index.html
32. X. L. Deán-Ben, S. Gottschalk, B. M. Larney, S. Shoham, and D. Razansky, “Advanced optoacoustic methods for multiscale imaging of in vivo dynamics,” Chem. Soc. Rev. 46(8), 2158–2198 (2017).
33. H. J. Eichler, J. Eichler, and O. Lux, “Laser Beam Propagation in Free Space,” in Lasers, H. J. Eichler, J. Eichler, and O. Lux, eds. (Springer, 2018), pp. 207–229.
34. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U. S. A. 100(12), 7075–7080 (2003).
35. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol. 21(11), 1356–1360 (2003).
36. A. K. Sharma, M. Raghuramaiah, P. A. Naik, and P. D. Gupta, “Use of commercial grade light emitting diode in auto-correlation measurements of femtosecond and picosecond laser pulses at 1054 nm,” Opt. Commun. 246, 195-204 (2004).
37. D. T. Reid, W. Sibbett, J. M. Dudley, L. P. Barry, B. Thomsen, and J. D. Harvey, “Commercial Semiconductor Devices for Two Photon Absorption Autocorrelation of Ultrashort Light Pulses,” Appl. Opt. 37(34), 8142-8144 (1998).
38. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, “Light-emitting diodes as measurement devices for femtosecond laser pulses,” Opt. Lett. 22(4), 233-235 (1997).
39. F. R. Laughton, D. A. Barrow, and E. L. Portnoi, “The Two-Photon Absorption Semiconductor Waveguide Autocorrelator,” IEEE J. Quant. Electron. 30(3), 838-845 (1994).
40. A. K. Sharma, R. K. Patidar, M. Raghuramaiah, A. S .Joshi, P. A. Naik, and P. D .Gupta, “A study on wavelength dependence and dynamic range of the quadratic response of commercial grade light emitting diodes,” Opt. Commun. 285(15), 3300-3305 (2012).
41. Batop optoelectronics, Refractive index of AlGaAs, from
https://www.batop.de/information/n_AlGaAs.html
42. S. A. Aljunid and A. Lamas-Linares, Optical Autocorrelation using Non-Linearity in a Simple Photodiode (National University of Singapore, 2006).
43. D. J. Kane, “Principal components generalized projections: a review [Invited],” J. Opt. Soc. Am. B. 25(6), A120-A132 (2008).
44. J. Hyyti, E. Escoto, and G. Steinmeyer, “Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution,” Rev. Sci. Instrum. 88, 103102 (2017).
45. P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3(12), 1320-1330 (2016).
46. T. Zahavy, A. Dikopoltsev, D. Moss, G. I. Haham, O. Cohen, S. Mannor, and M. Segev, “Deep learning reconstruction of ultrashort pulses,” Optica 5(5), 666-673 (2018).
47. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-Photon Excitation Fluorescence Microscopy,” Annu. Rev. Biomed. Eng. 2, 399-429 (2000).
48. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lens using two-photon excited fluorescence,” Appl. Opt. 36(1), 397-401 (1997).
49. Olympus, transmission curve of UPLXAPO 20x objective, from:
https://www.olympus-lifescience.com/en/objectives/detail/0-DIRECTORY%3A%3ADirFrontend-itemId.511710236.html
50. Carl Zeiss, transmission curve of Plan-Apochromat 40x/1.3 oil, from:
https://www.micro-shop.zeiss.com/en/us/shop/objectives/420762-9800-000/Objective-Plan-Apochromat-40x-1.3-Oil-DIC-M27
51. A. Webster, Useful Mathematical Formulas for Transform Limited Pulses, from: http://falsecolour.com/aw/index.html
52. Coherent, specification of Chameleon Ultra series, from:
https://www.coherent.com/lasers/oscillators/chameleon-ultra
53. J. U. Kang, A. Villeneuve, M. S. Bahae, and G. I. Stegeman, “Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap,” Appt. Phys. Lett. 65(2), 147-149 (1994).