簡易檢索 / 詳目顯示

研究生: 鍾禮安
Chung, Li-An
論文名稱: 應用單層多晶矽CMOS製程以提升雙空腔熱電能源採集器效能之研究
Development of a Thermoelectric Energy Generator with Double Cavity by Single Polysilicon Layer in CMOS Process
指導教授: 楊世銘
Yang, Shih-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 70
中文關鍵詞: 能源採集器熱電效應晶圓級封裝
外文關鍵詞: Thermoelectric energy generator, CMOS process, Double cavity design, Wafer level packaging
相關次數: 點閱:130下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來由於無線網路感測器或穿戴式裝置的發展日益增加,本研究設計一款能源採集器為其提供能源供應。熱電能源採集器能夠利用賽貝克效應(Seebeck effect)將環境中熱能轉換成電能。為了提升熱電能源採集器的功率輸出,本論文利用單層多晶矽CMOS製程結合雙空腔結構設計,提升熱電能源採集器的性能,同時減少製程的步驟。本研究5 mm × 5 mm晶片採用TSMC 0.18 μm 1P6M CMOS 製程,由於其多晶矽的Seebeck係數較前人所使用的製程高,其輸出電壓較高。此外,由於此製程只需單層多晶矽,透過不同的摻雜,即可得到不同的材料特性,因此製程步驟較前人的製程簡單。本研究也修改了前人的雙空腔結構設計,使熱電能源採集器用有更好的結構穩定、絕緣性、以及更好的熱傳導。實驗結果顯示,一個1.5 mm × 1.5 mm的發電單元之輸出可以達到0.105 μW/cm2K2的功率係數,以及15.60 V/cm2K的電壓係數。除此之外,本研究提出了一個改良的晶圓級封裝方式,透過封裝增加熱電能源採集器的熱電偶數,改善封裝後的熱分佈問題。

    Energy harvesting is a major challenge in developing wireless sensor network (WSN) applications. A thermoelectric generator (TEG) can generate electric energy by the temperature difference between a hot and cold junction through the Seebeck effect. This thesis proposes a TEG chip with double cavity design by TSMC 0.18 μm 1P6M CMOS process. This design has better Seebeck coefficient from the polysilicon layer and better structure design to obtain higher performance. Measurement result shows that the TEG chip has voltage factor 15.60 V/cm2K and power factor 0.105 μW/cm2K2 in a 1.5 mm × 1.5 mm unit cell, about 5.4 times and 2.34 times of the previous work by using TSMC 0.35 μm 2P4M CMOS process, respectively. In addition, an improved wafer level packaging is proposed for TEG chip for better thermal distribution.

    Contents Abstract in Chinese i Abstract vii Contents viii List of Tables x List of Figures xi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 1 1.3 Outline 6 Chapter 2 Design of Thermoelectric Energy Generator by CMOS Process 10 2.1 Introduction 10 2.2 Double cavity design 11 2.3 TSMC 0.18 μm CMOS process 13 2.4 Post process 15 2.5 Summary 16 Chapter 3 Performance Simulation and measurement of Thermoelectric Energy Generator 26 3.1 Introduction 26 3.2 Simulation 26 3.3 Experimental result of TEG 29 3.4 Summary 33 Chapter 4 Wafer Level Packaging on Thermoelectric Energy Generator 52 4.1 Introduction 52 4.2 Bonding in wafer level packaging 53 4.3 Finite element method analysis for TEG performance 54 4.4 Summary 55 Chapter 5 Summary and Conclusions 64 References 66

    [1] T. W. Shen, K. C. Chang, C. M. Sun, W. Fang, “Performance Enhance of CMOS-MEMS Thermoelectric Infrared Sensor by Using Sensing Material and Structure Design,” Journal of Micromechanics and Microengineering, Vol. 29, Issue 2, 025007, 2019.
    [2] S. H. Wang, “Development of a Thermoelectric Energy Generator with Double Cavity Design by Standard CMOS Process for Higher Performance,” Master Thesis, National Cheng Kung University, Taiwan, 2019.
    [3] P. V. Mane-Deshmukh, D. M. Adat, B. P. Ladgaonak, S. K. Tilekar, “Monitoring and Control of Gas Leakages of Industrial Sector Using PIC 18F4550, Zigbee and Wireless Sensor Actuator Network,” Journal on Electronics Engineering, Vol. 8l No. 3l, 2018.
    [4] T. Zhang, R. R. Xu, Y. W. Zhang, D. Q. Meng, “Design of Storage and Monitoring System for Medical Dangerous Chemicals Based on Wireless Sensor Network,” IOP Conference Series: Materials Science and Engineering, Vol. 692, 2019.
    [5] D. Y. Zou, S. Y. Chen, S. Han, W. X. Meng, D. An, J. Q. Li, W. L. Zhao, “Design of a Practical WSN Based Fingerprint Localization System,” Mobile Networks and Applications, pp. 806–818, 2019.
    [6] B. H. Curtin, R. H. David, E. D. Dunham, C. D. Johnson, N. Shyamkumar, T. A. Babbitt, S. J. Matthews, “Designing a Raspberry Pi Sensor Network for Remote Observation of Wildlife,” HotSoS '19: Proceedings of the 6th Annual Symposium on Hot Topics in the Science of Security, No. 17, pp. 1-2, 2019.
    [7] S. A. Katyayan, D. W. Wajgi, R. D. Wajgi, “A Clustering Based Approach to Provide Security to Wireless Sensor Network,” 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI), pp. 1203-1208, 2018.
    [8] S. Ullo, M. Gallo, G. Palmieri, P. Amenta, M. Russoy, G. Romanoz, M. Ferrucciz A. Ferrarax, M. De Angelis, “Application of Wireless Sensor Networks to Environmental Monitoring for Sustainable Mobility,” 2018 IEEE International Conference on Environmental Engineering, pp. 1-7, 2018.
    [9] T. Heiduk, A. M. Thike, P. S. Excell, A. Osanlou, “A Wearable Wireless Sensor Network Node for Prevention of Physical Injuries,” Annals of Emerging Technologies in Computing, Vol. 3, No. 3, pp. 9-18, 2019.
    [10] C. Jayawickrama, S. Kumar, S. Chakrabartty, H. Song, “A Novel Chaotic Modulation Approach of Packaged Antenna for Secured Wireless Medical Sensor Network in E‐healthcare Applications,” Microwave and Optimal Technology Letters, Vol. 62, Issue 2, pp. 933-942, 2020.
    [11] E. Kordetoodeshki, A. Hassanzadeh, “Design of Low Voltage Low Power DC-DC Converters Using Adiabatic Technique,” Journal of Circuits, Systems and Computers, Vol. 27, 1850094, 2018.
    [12] W. Lai, S. Jang, C. Huang, M. Juang, “Fully-Integrated CMOS DC-DC Boost Converter,” 2019 IEEE Asia Power and Energy Engineering Conference, pp. 84-88, 2019.
    [13] Y. Hsu, Y. Lin, J. Lin, H. Chiu, “A Ripple-Based DC-DC Buck Converter with Random Switching Frequency,” 2019 4th International Conference on Intelligent Green Building and Smart Grid, pp. 72-75, 2019.
    [14] S. M. Yang, T. Lee, C. A. Jeng, “Development of a Thermoelectric Energy Harvester with Thermal Isolation Cavity by Standard CMOS Process,” Sensors and Actuators A: Physical, Vol. 153, pp. 244-50, 2009.
    [15] S. M. Yang, T. Lee, M. Cong, “Design and Verification of a Thermoelectric Energy Harvester with Stacked Polysilicon Thermocouples by CMOS Process,” Sensors and Actuators A: Physical, Vol. 157, pp. 258-66, 2010.
    [16] J. Xie, C. Lee, H. Feng, “Design Fabrication and Characterization of CMOS MEMS-based Thermoelectric Power Generators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 317-24, 2010.
    [17] P. H. Kao, P. J. Shih, C. L. Dai, M. C. Kiu, “Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generator,” Sensors, Vol. 10, pp. 1315-25, 2010.
    [18] X. Yu, Y. Wang, Y. Liu, T. Li, H. Zhou, X. Gao, F. Feng, T. Roinila, Y. Wang, “CMOS MEMS-based Thermoelectric Generator with an Efficient Heat Dissipation Path,” Journal of Micromechanics and Microengineering, Vol. 22, 105011, 2012.
    [19] S. W. Peng, P. J. Shih, C. L. Dai, “Manufacturing and Characterization of a Thermoelectric Energy Harvester Using the CMOS-MEMS Technology,” Micromachines, Vol. 6, pp. 1560-68, 2015.
    [20] E. F. Sawires, M. I. Eladawy, Y. I. Ismail, H. Abdelhamid, “Thermal Resistance Model for Standard CMOS Thermoelectric Generator,” IEEE Access, Vol. 6, pp. 8123-32, 2018.
    [21] R. Roth, R. Rostek, K. Cobry, C. Kohler, M. Groh, P. Woias, “Design and Characterization of Micro Thermoelectric Cross-Plane Generators with Electroplated and Reflow Soldering,” Journal of Microelectromechanical Systems, Vol. 23, pp. 961-71, 2014.
    [22] J. P. Carmo, L. M. Goncalves, J. H. Correia, “Thermoelectric Microconverter for Energy Harvesting Systems,” IEEE Transactions on Industrial Electronics, Vol. 57, pp. 861-67, 2010.
    [23] X. Yu, Y. Wang, Y. Liu, T. Li, H. Zhou, X. Gao, F. Feng, T. Roinila, Y. Wang, “Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency,” Sensors and Actuators A: Physical, Vol. 145-46, pp. 423-29, 2008.
    [24] M.D. Chen, J.Y. Wang, S.M. Yang, M.H. Tsai, “Structural Design for Dimensional Stability of Thermocouples in Thermoelectric Energy Harvester,” IEEE Sensors Journal, Vol. 19, pp. 58-64, 2019.
    [25] M. Boutchich, K. Ziouche, P. Godts, D. Leclercq, “Characterization of Phosphorus and Boron Heavily Doped LPCVD Polysilicon Films in the Temperature Range 293-373 K,” IEEE Electron Device Letters, Vol. 23, No. 3, pp. 139-41, 2002.
    [26] C. Lee, J. Xie, “Design and Optimization of Wafer Bonding Packaged Microelectromechanical Systems Thermoelectric Power Generators with Heat Dissipation Path,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 27, pp. 1267-71, 2009.
    [27] N. Wojtas, E. Schwyter, W. Glatz, S. Kühne, W. Escher, C. Hierold, “Power Enhancement of Micro Thermoelectric Generators by Microfluidic Heat Transfer Packaging,” Sensors and Actuators A: Physical, Vol. 188, pp. 389-395, 2011.
    [28] H. B. Lee, H. J. Yang, J. H. We, K. Kim, K. C. Choi, B. J. Cho, “Thin-Film Thermoelectric Module for Power Generator Applications Using a Screen-Printing Method,” Journal of Electronic Materials, Vol. 40, No. 5, pp. 615-19, 2011.
    [29] D. Xu, B. Xiong, G. Wu, Y. Ma, E. Jing, Y. Wang, “3D Monolithic Integrated Thermoelectric IR Sensor,” Sensors, IEEE, pp. 1-4, 2012.
    [30] W. Wang, Y. Ji, H. Xu, H. Li, T. Visan, F. Golgovici, “A High Packing Density Micro-Thermoelectric Power Generator Based on Film Thermoelectric Materials Fabricated by Electrodeposition Technology,” Surface and Coatings Technology, Vol. 231, pp. 583-589, 2013
    [31] M. Chen, G. J. Snyder, “Analytical and Numerical Parameter Extraction for Compact Modeling of Thermoelectric Coolers,” International Journal of Heat and Mass Transfer, Vol. 60, pp. 689-99, 2013.
    [32] O. Sullivan, M. P. Gupta, S. Mukhopadhyay, S. Kumar, “On-Chip Power Generation Using Ultrathin Thermoelectric Generators,” Journal of Electronic Packaging, Vol. 137, pp. 0110051-57, 2014.
    [33] A. Hilton, D. S. Temple, “Wafer-Level Vacuum Packaging of Smart Sensors,” Sensors, Vol. 16, pp. 1819, 2016.
    [34] K. Ziouche, Z. Yuan, P. Lejeune, T. Lasri, D. Leclercq, Z. Bougrioua, “Silicon-Based Monolithic Planar Micro Thermoelectric Generator Using Bonding Technology,” Journal of Microelectromechanical Systems, Vol. 26, pp. 45-47, 2017.
    [35] S. M. Hu, “Critical Stress in Silicon Brittle Fracture, and Effect of Ion Implantation and Other Surface Treatments,” Journal of Applied Physics, Vol. 53, pp. 3576-80, 1982.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE