簡易檢索 / 詳目顯示

研究生: 楊婷雅
Yang, Ting-Ya
論文名稱: 應用於醫學影像上的輪廓線評估系統
A Contour Evaluation System in Medical System
指導教授: 陳立祥
Chen, Lih-Shyang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 77
中文關鍵詞: 動態輪廓線模型系統切面伺服器影像分割評估輪廓線
外文關鍵詞: evaluation, contour, image segmentation, cross-section server, ACM
相關次數: 點閱:124下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   醫學影像辨識是一件頗為複雜的工作,必須結合影像處理、電腦圖學及解剖學等眾多相關領域的知識才能完成。在本論文中我們希望可以將辨識的結果經由評估修正,以提供醫學或是教學上之輔助。
      影像辨識方面,建立在我們已發展的「以黑板架構基礎之互動式影像辨識系統」之上。而影像辨識的結果,我們採用描述物體外圍的輪廓線來表示。因此,在影像結果評估方面,我們發展了一套「輪廓線評估系統」。此輪廓線系統除了可利用辨識出來的器官輪廓線及其原始影像,作一成果優異性的評估,也可以處理來自「動態輪廓線模型系統」產生的邊緣線段,並將評估的結果回饋給該系統,以其對器官輪廓線或邊緣線段作修正,而得到最佳辨識之結果。
      而辨識、修正後的器官輪廓線,我們除了透過「以輪廓線為主的三維物件重建系統」重建出該器官的三維模型,也利用一套「切面伺服器」展現輪廓線評估修正後的成果。

     The recognition of a medical image is a complex task. We need to integrate the knowledge of image preprocessing, computer vision and anatomy to complete the task. In this thesis, we hope to evaluate the result of image recognition, and correct it. It will help the user to understand more about the organ in a variety of the applications in medicine or education.
     In the part of image recognition, we develop some knowledge sources on a specific segmentation system, Mirac Viewer. We use the contour that used to describe the outline of an object to represent the results of the recognition. Therefore, we develop a “Contour Evaluation System” for evaluation of these recognition results. This evaluation system uses not only the contours and original image, but the edges produced from Active Contour Model system to do a series of evaluations. We will provide information adequately to the Active Contour Model system, and then modify all these contours.
     We use another system named 3DBuilder to reconstruct the 3D organ with the recognized or modified contours. Besides, we also use the Cross-Section Server to represent the final contours.

    第一章 導論 1 1.1 概述 1 1.2 章節提要 3 第二章 研究背景 4 2.1 人體器官的三維重建 4 2.2 影像分割 5 2.2.1 影像分割方法 5 2.2.2 黑板架構影像辨識軟體 6 2.3 分割結果評估(SEGMENTATION EVALUATION) 8 2.3.1 研究動機 8 2.3.2 文獻回顧(Paper Review) 9 第三章 輪廓線評估系統架構與設計 11 3.1 評估動機與目的 11 3.2 資料分析 12 3.2.1 點評估層(Vertex Layer) 14 3.2.2 線段評估層(Segment Layer) 15 3.2.3 輪廓線評估層(Contour Layer) 17 3.3 資料結構、類別定義與說明 20 3.3.1資料結構(Data Structure)定義 20 3.3.2 類別(Classes) 22 3.4 系統架構 24 3.5 評估流程 26 3.5.1 獨立式評估 27 3.5.2 參考式評估 28 第四章 輪廓線評估方法與實作 30 4.1 評估工具—由統計觀點談評估 30 4.1.1 統計學的定義與重要性 30 4.1.2 統計名詞定義 31 4.1.3 統計工具在輪廓線評估系統的應用 32 4.2 點評估層(VERTEX LAYER) 33 4.3 線段評估層(SEGMENT LAYER) 36 4.3.1 分段演算法 36 4.3.1.1 Partitioning—特徵點分段 37 4.3.1.2 Grouping—競爭型分段 38 4.3.2 線段評估層屬性與評估應用 45 4.3.3 評估 49 4.3.3.1 獨立評估模式 49 4.3.3.2 參考資料評估模式 52 4.4 輪廓線評估層(CONTOUR LAYER) 61 4.4.1 屬性 61 4.4.2 評估 61 4.5 評估效度討論 64 第五章 評估成果應用 66 5.1 輪廓線評估成果與ACM的整合應用 66 5.2 輪廓線的應用—切面伺服器(CROSS-SECTION SERVER) 67 5.2.1 動機與目的 67 5.2.2 Cross-Section Server系統架構 70 5.2.3 畫面規劃與功能說明 71 5.2.4 結論 72 第六章 成果與發展 73 6.1 實作成果 73 6.1.1將輪廓線切割成屬性相近的數條分段集合 73 6.1.2改進評估系統架構 73 6.2 未來發展 75 § 參考文獻 § 76

    [1] Chun-Lung Lin, “An Interactive Image Recognition System Based on A Blackboard Architecture”, National Cheng Kung University, 2003
    [2] Yu-Jen Lin, “An Active Contour Model and Its Applications in Medical 3D Imaging”, National Cheng Kung University, 2003
    [3] Jian-Fu Lin, “A Contour Evaluation System and Its Application in Medical Image Segmentation”, National Cheng Kung University, 2004
    [4] Chia-Chen Chang, “An Active Contour Model and Its Applications in Medical 3D Imaging”, National Cheng Kung University, 2005
    [5] Richard Hartley, and Andrew Zisserman, “Multiple view geometry in computer vision”, Cambridge University Press, 2000
    [6] Bjorn Johansson, “A survey on: Contents Based Search in Image Databases”, Linkoping University
    [7] Luomin Gao, David G. Heath, Brian S. Kuszyk, Elliot K. Fishman, “Automatic liver segmentation technique for three-dimensional visualization of CT data”, Radiology, Vol. 201, pp. 359-364, 1996
    [8] Y. J. Zhang, “A survey on evaluation methods for image segmentation”, Pattern Recognition, Vol. 29, No. 8, pp.1335-1346, 1996
    [9]: Dengsheng Zhang and Guojun Lu, “A Comparative Study on Shape Retrieval Using Fourier Descriptors with Different Shape Signatures”, Monash University
    [10] Kunttu, I., Lepistö, L., Rauhamaa, J. & Visa, A., “Multiscale fourier descriptor for shape-based image retrieval”, 17th International Conference on Pattern Recognition (ICPR), Vol. 4, pp. 23-26, 2004
    [11] Djemel Ziou, and Salvatore Tabbone, “Edge Detection Techniques An Overview”, International Journal of Pattern Recognition and Image Analysis ,1998
    [12] Michael J. Ackerman, “Accessing the Visible Human Project”, D-Lib Magazine, The magazine of the digital library forum, 1995, http://www.dlib.org/dlib/october95/10ackerman.html
    [13] Vikram Chalana and Yongmin Kim, “A methodology for evaluation of boundary detection algorithms on medical images”, IEEE Trans. on medical imaging, Vol. 16, No. 5, pp. 642-652, October 1997
    [14] Avinash C. Kak, and Malcolm Slaney, “Principles of computerized Tomographic imaging”, IEEE Press, 1987

    下載圖示 校內:2015-08-04公開
    校外:2015-08-04公開
    QR CODE