簡易檢索 / 詳目顯示

研究生: 林家緯
Lin, Chia-Wei
論文名稱: 強非線性波在破碎過程中對單樁式離岸風機基樁之影響
The Influence of Strong Nonlinear Waves on the Mono-pile Offshore Wind Turbine Foundation during the Breaking Process
指導教授: 林宇銜
Lin, Yu-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 108
中文關鍵詞: 計算流體力學非線性波群波浪調變溯升高度經驗模態分解波浪荷載單樁式離岸風機基樁
外文關鍵詞: CFD, Non-linear Wave Group, Wave Modulation, Run-Up, EMD, Wave Load, Offshore Wind Turbine, Mono-pile Foundation.
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用計算流體力學(Computational Fluid Dynamics, CFD)的數值方法對流體力學的控制方程式進行求解與流場模擬,針對離岸風機單樁式基樁與三頻波之間的非線性波群(Non-linear Wave Group)交互作用影響來探討。利用有限體積法(Finite Volume Method, FVM)做為離散求解的數值模擬,數值波浪水槽(Numerical Wave Tank, NWT)中自由液面部分採用體積分率法(Volume of Fraction, VOF)解決空氣與水之兩相流問題;流體與基樁壁面之黏性流問題則採用雷諾平均納維-斯托克斯方程式(RANS)搭配RNG k-ε紊流模型(RNG k-ε Turbulent Model)求解基樁受水動力作用時的暫態情形。在數值水槽模型的網格處理上,對時間步長與網格大小相對關係的庫朗數(Courant Number)進行侷限以增進模擬計算時的穩定與收斂性,因此針對自由液面交界範圍採用體積加密的方式固定其大小,同時也將無因次壁面函數(Non-Dimensional Wall Function) y^+考慮在內,對基樁壁面邊界層處增加使用邊界層網格設定(Inflation)生成六面體網格;並拘束其第一層厚度以得到更為準確的結果,藉此能夠計算出紊流邊界層內的黏性流域對基樁之影響;最後也在水槽的後方採用數值消波(Numerical Beach)的設定,讓波浪在通過基樁一段距離後進行消散以防止回波對結果造成影響。此外在波浪條件的部分,為了了解實際海況的非線性波群作用與波浪調變(Wave Modulation)所造成的影響,本文針對單樁式基樁在三種典型非線性波列之演變進行觀察探討,分別是單一頻率規則波、兩相等振幅之雙頻波、一主頻兩副頻之三頻波的不同條件下之溯升高度位置情形,並導入無因次化調變因子(δ ̂)分析其與基樁周圍之溯升情形。在受力探討的部分,本研究採用除了以Morison的半經驗公式推估流體作用的水平力外,快速傅立葉轉換(Fast Fourier Transform, FFT)搭配Hilbert-Huang Transform和經驗模態分解法(Empirical Mode Decomposition, EMD)來進行能譜時域分析將受力得以分解出準靜態力、動態力與砰擊力(Slamming Force),使得在波浪荷載的探討與上有較為精確的結果,也有助於日後的離岸風電海洋工程的開發風險影響評估。

    In this thesis, the computational fluid dynamics (CFD) numerical method is used to solve fluid mechanics governing equations and a flow field simulation. The influence of the interaction between the strong nonlinear waves of tri-chromatic waves and the mono-pile offshore wind turbine (OWT) foundation is discussed. We use the finite volume method (FVM) as a numerical solution for the discrete solution, and we also solve the problem of two-phase flow using the volume of fraction (VOF) method. And, the viscous flow problem between the fluid and the wall surface of the mono-pile is solved using the Reynolds-average Navier-Stokes equation (RANS) and the RNG k-ε turbulent model. In addition, regarding wave conditions, we realize the effect of nonlinear wave group interaction, wave modulation, wave evolution, and run-up height of nonlinear wave trains for a mono-pile foundation. The wave condition of the tri-chromatic wave consists of one main frequency and two sub-frequencies, and it concerns about eight kinds of different non-dimensional modulation factor (δ ̂) situations. In this study, except for the horizontal force of the Morison's semi-empirical formula estimating fluid action, fast Fourier transform (FFT) is used. Hilbert-Huang transform and empirical mode decomposition (EMD) are also applied for analyzing the energy spectrum in the time domain in order to decompose the total force into quasi-static force, dynamic force, and slamming force, which makes the wave load discussion have more accurate results regarding ocean engineering areas, and it also can help the development of offshore wind turbine risk assessment in the future.

    摘要 II 致謝 XIII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 符號說明 XXIII 第一章 緒論 1 1-1 研究動機 1 1-2 文獻回顧 3 1-3 本文架構 6 第二章 理論背景與數值方法 7 2-1 統御方程式 7 2.1.1 連續方程式 7 2.1.2 動量方程式 8 2.1.3 紊流模型方程式 8 2.1.4 體積分率法 11 2-2 數值模型處理 12 2.2.1 壁面函數 12 2.2.2 網格膨脹層處理 15 2.2.3 數值消波 15 2-3 離散方法與求解方式 17 2.3.1 有限體積法 18 2.3.2 求解器 19 2-4 三頻波 21 2-5 波浪溯升公式 22 2-6 波浪荷載 23 第三章 數值模型設定與波浪條件 25 3-1 基樁幾何外型設計 25 3-2 邊界條件 26 3-3 網格生成 27 3-4 波浪條件 29 第四章 資料分析方法 31 4-1 Hilbert轉換之能譜分析方法 31 4.1.1 瞬時頻率 32 4.1.2 本質模態函數 33 4.1.3 經驗模態分解 33 4.1.4 Hilbert能譜分析 47 第五章 結果與討論 49 5-1 波浪條件驗證 49 5.1.1 波高驗證 51 5.1.2 波浪調變驗證 58 5-2 波浪-結構物之荷載驗證 67 5-3 波浪演化分析 69 5-4 波浪溯升分析 80 5.4.1 溯升高度之定性分析 81 5.4.2 最大溯升高度之定量分析 87 5-5 波浪荷載分析 90 5.5.1 波浪荷載與最大溯升之定性分析 94 5.5.2 荷載定量分析 99 第六章 結論與未來展望 101 參考文獻 103

    [1] W. Europe, "The European offshore wind industry—Key trends and statistics 2016," Wind Europe: Brussels, Belgium, vol. 37, 2017.
    [2] T. L. Andersen, P. Frigaard, M. L. Damsgaard, and L. De Vos, "Wave run-up on slender piles in design conditions - Model tests and design rules for offshore wind," Coastal Engineering, vol. 58, pp. 281-289, Apr 2011.
    [3] M. Onorato, A. R. Osborne, M. Serio, L. Cavaleri, C. Brandini, and C. Stansberg, "Extreme waves, modulational instability and second order theory: wave flume experiments on irregular waves," European Journal of Mechanics-B/Fluids, vol. 25, pp. 586-601, 2006.
    [4] V. Halfiani and M. Ramli, "Nonlinear evolution of Benjamin-Feir wave group based on third order solution of Benjamin-Bona-Mahony equation," in IOP Conference Series: Materials Science and Engineering, 2018, p. 012043.
    [5] J. Morison, J. Johnson, and S. Schaaf, "The force exerted by surface waves on piles," Journal of Petroleum Technology, vol. 2, pp. 149-154, 1950.
    [6] A. Mockutė, E. Marino, C. Lugni, and C. Borri, "Comparison of hydrodynamic loading models for vertical cylinders in nonlinear waves," Procedia engineering, vol. 199, pp. 3224-3229, 2017.
    [7] N. E. Huang, Z. Shen, and S. R. Long, "A new view of nonlinear water waves: the Hilbert spectrum," Annual review of fluid mechanics, vol. 31, pp. 417-457, 1999.
    [8] D. N. Veritas, "Design of offshore wind turbine structures," Offshore Standard DNV-OS-J101, vol. 6, p. 2004, 2004.
    [9] R. K. Saigal, D. Dolan, A. Der Kiureghian, T. Camp, and C. E. Smith, "Comparison of design guidelines for offshore wind energy systems," in Offshore technology conference, 2007.
    [10] N. Repalle, K. Thiagarajan, and M. Morris-Thomas, "CFD simulation of wave run-up on a spar cylinder," in 16th Australasian Fluid Mechanics Conference (AFMC), 2007, pp. 1091-1094.
    [11] Y.-H. Lin, J.-F. Chen, and P.-Y. Lu, "A CFD model for simulating wave run-ups and wave loads in case of different wind turbine foundations influenced by nonlinear waves," Ocean Engineering, 2016.
    [12] C. U. Navaratnam, A. Tørum, and Ø. A. Arntsen, "Preliminary analysis of wave slamming force response data from tests on a truss structure in Large Wave Flume, Hannover, Germany," Norwegian University of Science and Technology Department of Civil and Transport Engineering Report No, 2013.
    [13] B. T. Paulsen, "Efficient computations of wave loads on offshore structures," Technical University of Denmark (DTU), 2013.
    [14] E. D. Christensen, H. Bredmose, and E. A. Hansen, "Extreme wave forces and wave run-up on offshore wind turbine foundations."
    [15] A. L. J. Pang, M. Skote, and S. Y. Lim, "Turbulence modeling around extremely large cylindrical bluff bodies," in The Twenty-third International Offshore and Polar Engineering Conference, 2013.
    [16] T. B. Benjamin and J. Feir, "The disintegration of wave trains on deep water Part 1. Theory," Journal of Fluid Mechanics, vol. 27, pp. 417-430, 1967.
    [17] B. M. Lake, H. C. Yuen, H. Rungaldier, and W. E. Ferguson, "Nonlinear deep-water waves: theory and experiment. Part 2. Evolution of a continuous wave train," Journal of Fluid Mechanics, vol. 83, pp. 49-74, 1977.
    [18] H. C. Yuen and B. M. Lake, "Instabilities of waves on deep water," Annual Review of Fluid Mechanics, vol. 12, pp. 303-334, 1980.
    [19] A. W. Nielsen, S. B. Mortensen, V. Jacobsen, and E. D. Christensen, "Numerical modelling of wave run-up on a wind turbine foundation," in ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering, 2008, pp. 597-603.
    [20] S. Schløer, B. T. Paulsen, and H. Bredmose, "Application of CFD based wave loads in aeroelastic calculations," in ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering, 2014, pp. V09BT09A056-V09BT09A056.
    [21] J. Wienke and H. Oumeraci, "Breaking wave impact force on a vertical and inclined slender pile - theoretical and large-scale model investigations," Coastal Engineering, vol. 52, pp. 435-462, May 2005.
    [22] N. E. Huang, S. R. Long, and Z. Shen, "The mechanism for frequency downshift in nonlinear wave evolution," in Advances in applied mechanics. vol. 32, ed: Elsevier, 1996, pp. 59-117C.
    [23] B. Lauder and D. Spalding, "Lectures in mathematical models of turbulence," London: AP, 1972.
    [24] M. Schultz, J. Finlay, M. Callow, and J. Callow, "Three models to relate detachment of low form fouling at laboratory and ship scale," Biofouling, vol. 19, pp. 17-26, 2003.
    [25] J. C. Park, M. H. Kim, and H. Miyata, "Fully non‐linear free‐surface simulations by a 3D viscous numerical wave tank," International Journal for Numerical Methods in Fluids, vol. 29, pp. 685-703, 1999.
    [26] R. I. Issa, "Solution of the implicitly discretised fluid flow equations by operator-splitting," Journal of computational physics, vol. 62, pp. 40-65, 1986.
    [27] J. H. Ferziger, M. Peric, and A. Leonard, "Computational methods for fluid dynamics," ed: AIP, 1997.
    [28] R. J. Hallermeier, "Nonlinear flow of wave crests past a thin pile," Journal of the Waterways, Harbors and Coastal Engineering Division, vol. 102, pp. 365-377, 1976.
    [29] J. Niedzwecki and J. Huston, "Wave interaction with tension leg platforms," Ocean Engineering, vol. 19, pp. 21-37, 1992.
    [30] J. M. Niedzwecki and A. S. Duggal, "Wave runup and forces on cylinders in regular and random waves," Journal of waterway, port, coastal, and ocean engineering, vol. 118, pp. 615-634, 1992.
    [31] L. De Vos, P. Frigaard, and J. De Rouck, "Wave run-up on cylindrical and cone shaped foundations for offshore wind turbines," Coastal Engineering, vol. 54, pp. 17-29, 2007.
    [32] J. Ramirez, P. Frigaard, T. L. Andersen, and L. de Vos, "Large scale model test investigation on wave run-up in irregular waves at slender piles," Coastal Engineering, vol. 72, pp. 69-79, Feb 2013.
    [33] J. R. Morison, M. P. Obrien, J. W. Johnson, and S. A. Schaaf, "The Force Exerted by Surface Waves on Piles," Transactions of the American Institute of Mining and Metallurgical Engineers, vol. 189, pp. 149-154, 1950.
    [34] T. Von Karman, "The impact on seaplane floats during landing," 1929.
    [35] H. Wagner, "Ü ̈ ber Stoss und Gleitvorgänge an de r Oberfläche von Flüssigkeiten," Zeitschrift fü r Angewandte Mathematik und Mechanik, vol. 12, 1932.
    [36] Y. Goda, S. Haranaka, and M. Kitahata, "Study of impulsive breaking wave forces on piles," Report Port and Harbour Technical Research Institute, vol. 6, pp. 1-30, 1966.
    [37] B. Le Mehaute, "Similitude in coastal engineering," Journal of the waterways, harbors and coastal engineering division, vol. 102, pp. 317-335, 1976.
    [38] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
    [39] O. Faltinsen, Sea loads on ships and offshore structures vol. 1: Cambridge university press, 1993.
    [40] C.-Y. Wang, "On high-frequency oscillatory viscous flows," Journal of Fluid Mechanics, vol. 32, pp. 55-68, 1968.
    [41] T. Sarpkaya, "Force on a circular cylinder in viscous oscillatory flow at low Keulegan—Carpenter numbers," Journal of Fluid Mechanics, vol. 165, pp. 61-71, 1986.
    [42] M. P. Tulin and T. Waseda, "Laboratory observations of wave group evolution, including breaking effects," Journal of Fluid Mechanics, vol. 378, pp. 197-232, 1999.

    無法下載圖示 校內:2021-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE