| 研究生: |
劉家佑 Liu, Jia-You |
|---|---|
| 論文名稱: |
共沉澱法合成氧化鐵沉積薄膜應用於太陽能水分解反應 Synthesized iron oxide nanoparticles by co-precipitation method depositing thin film applied in solar water splitting cell |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 共沉澱法 、磁鐵礦 、赤鐵礦 、水分解反應 |
| 外文關鍵詞: | co-precipitation, magnetite, hematite, water splitting |
| 相關次數: | 點閱:95 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1972年Honda and Fujishima 提出以TiO¬2作為光電極材料,成為了半導體材料應用於光電極材料的先河,自此科學家已投入數十年時間研究相關領域。其中赤鐵礦也曾一度是光電極材料的人選,主要原因在於其能隙大小適中、溶液中穩定性良好、地殼含量高等等,然而其仍受限於本身特性造成電解水效率低弱,但目前已提出許多解決方法,例如摻雜其元素提高載子濃度、與其他材料結合形成異質接面等等。目前發展至今,赤鐵礦若欲與其他材料結合形成異質接面,大多需耗費高成本與複雜技術,本研究中試以合成磁鐵礦之共沉澱法,在不通保護氣氛的條件下反應,其產物主要為磁鐵礦與赤鐵礦以及少量不穩定鐵氧化合物,並且透過加入導電高分子(poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT/PSS)將氧化鐵奈米粒子與其混合形成氧化鐵沉積薄膜,因而能夠直接塗抹於不同基板上,進行後續氧化鐵薄膜特性分析以及電化學相關測量。其中X-ray繞射圖譜發現到以共沉澱法合成之氧化鐵奈米粒子大多為磁鐵礦(Fe3O4),僅有少量赤鐵礦(α-Fe2O3)出現,當加入PEDOT/PSS時,兩者間並無交互作用,PEDOT/PSS在2θ= 10°~30°間有非晶相峰出現。TEM影像中觀察到大多合成氧化鐵奈米粒子為磁鐵礦(Fe3O4),與X-ray繞射圖譜結果一致,並且四種介面活性劑合成的氧化鐵奈米粒子尺寸約10 nm。UV/Vis 圖譜中顯示合成的氧化鐵奈米粒子並無明顯吸收峰,僅有介面活性劑本身溶出造成的吸收峰,當PEDOT/PSS加入時,顯示一樣結果,僅在245 nm有一吸收峰為PSS中的苯基造成。JV曲線中,ITO玻璃基板以甘胺酸合成之氧化鐵奈米粒子沉積薄膜光電流效率最大,但在矽基板則以貼附程度愈差有較大光電流效率,以單寧酸合成之氧化鐵奈米粒子沉積薄膜具有最大光電流效率。Mott-Schottky測試中,,四種介面活性劑合成的氧化鐵奈米粒子在ITO玻璃基板與矽基板中皆顯示正斜率,代表該合成材料具N-type性質,但計算平帶電位時,發現與水氧化還原電位有偏差,造成偏差原因為合成之氧化鐵奈米粒子大多為磁鐵礦(Fe3O4),屬於類金屬材料,在Mott-Schottky測試中主要以半導體材料為主。EIS測試中顯示電極在反應中有兩因素主導,在高頻區以電荷轉移阻抗為主,而低頻區則屬於物質擴散阻抗,並且因電雙層非理想電容,選用R(QR)等效電路進行模擬。
In this research, we adopted conventional co-precipitation method to synthesize iron oxides. Numerous kinds of iron oxides were discovered in the results since the synthesis wasn’t carried out in a N2 atmosphere, which prevents magnetite from oxidizing. Within all the products, magnetite and hematite are the majorities. For characterization, crystal structure of the nanoparticles, surface morphology and optical properties of these iron oxides are examined. Furthermore, poly (3, 4-ethylenedioxythiophene) polystyrene sulfonate was introduced to the nanoparticles and was then deposited into thin film. Finally, we deposited thin film on ITO glass and silicon wafer as photoelectrodes and JV curve measurement, Mott-Schottky and EIS measurement are brought out in order to obtain electrochemical properties of the electrodes.
1. 張嘉修, 生質氫能. 科學發展, 2009. 433(生質能源): p. 32.
2. Sehested, J.R.R.-N.a.J., Steam Reforming for Hydrogen. The Process and the Mechanism. Fuel Chemistry Division Preprints, 2003. 48(1): p. 218.
3. Stiegel, G.J. and M. Ramezan, Hydrogen from coal gasification: an economical pathway to a sustainable energy future. International Journal of Coal Geology, 2006. 65(3): p. 173-190.
4. Freni, S., G. Calogero, and S. Cavallaro, Hydrogen production from methane through catalytic partial oxidation reactions. Journal of Power Sources, 2000. 87(1): p. 28-38.
5. Kudo, A. and Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev, 2009. 38(1): p. 253-78.
6. Fujishima, A. and K. Honda, Electrochemical photolysis of water at a semiconductor electrode. nature, 1972. 238(5358): p. 37-38.
7. 陳俊吉, 金屬氧化物半導體在可見光分解水製氫之研究. 2005, 國立成功大學,台南市.
8. Navarro, R., et al., Photocatalytic water splitting under visible light: concept and catalysts development. Advances in chemical engineering, 2009. 36: p. 111-143.
9. Tamirat, A.G., et al., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horiz., 2016. 1(4): p. 243-267.
10. https://en.wikipedia.org/wiki/Planck_constant.
11. https://continuingeducation.bnpmedia.com/courses/cool-roof-rating-council/whats-so-cool-about-cool-roofs/6/.
12. Kennedy, J.H. and K.W. Frese, Photooxidation of water at α‐Fe2 O 3 electrodes. Journal of the Electrochemical Society, 1978. 125(5): p. 709-714.
13. http://www.substech.com/dokuwiki/doku.php?id=pourbaix_diagrams.
14. Kang, Y.S., et al., Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chemistry of Materials, 1996. 8(9): p. 2209-2211.
15. Layek, S., et al., Synthesis of γ–Fe 2 O 3 nanoparticles with crystallographic and magnetic texture. International Journal of Engineering, Science and Technology, 2010. 2(8).
16. Glasscock, J.A., Nanostructured materials for photoelectrochemical hydrogen production using sunlight, in Chemical Sciences & Engineering, Faculty of Engineering. 2008, UNSW. p. 245.
17. Mayer, M.T., C. Du, and D. Wang, Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. Journal of the American Chemical Society, 2012. 134(30): p. 12406-12409.
18. 陳燕華, 神奇的奈米磁鐵礦. 科學發展, 2013. 482: p. 18-23.
19. Magnetite. Available from: https://en.wikipedia.org/wiki/Magnetite.
20. Laurent, S., et al., Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews, 2008. 108(6): p. 2064-2110.
21. Terris, B. and T. Thomson, Nanofabricated and self-assembled magnetic structures as data storage media. Journal of physics D: Applied physics, 2005. 38(12): p. R199.
22. Loh, K.-S., et al., Use of Fe3O4 nanoparticles for enhancement of biosensor response to the herbicide 2, 4-dichlorophenoxyacetic acid. Sensors, 2008. 8(9): p. 5775-5791.
23. Hergt, R., et al., Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. Journal of Physics: Condensed Matter, 2006. 18(38): p. S2919.
24. Dorniani, D., et al., Preparation of Fe(3)O(4) magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomedicine, 2012. 7: p. 5745-56.
25. Xin, X., et al., Highly efficient removal of heavy metal ions by amine-functionalized mesoporous Fe 3 O 4 nanoparticles. Chemical Engineering Journal, 2012. 184: p. 132-140.
26. Hong, R., et al., Synthesis, characterization and MRI application of dextran-coated Fe 3 O 4 magnetic nanoparticles. Biochemical Engineering Journal, 2008. 42(3): p. 290-300.
27. Qiao, R., C. Yang, and M. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Journal of Materials Chemistry, 2009. 19(35): p. 6274-6293.
28. Haw, C.Y., et al., Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceramics International, 2010. 36(4): p. 1417-1422.
29. Swart, A.T.P.K.I.V.K.H., Advanced Magnetic and Optical Materials. Advanced Materials. 2016: Wiley. 560.
30. Jolivet, J.-P., De la solution à l'oxyde. 1994, Paris.
31. Jolivet, J., et al., Influence of Fe (II) on the formation of the spinel iron oxide in alkaline medium. Clays and Clay Minerals, 1992. 40: p. 531-531.
32. Hematite; Available from: https://en.wikipedia.org/wiki/Hematite.
33. Sivula, K., F. Le Formal, and M. Grätzel, Solar water splitting: progress using hematite (α‐Fe2O3) photoelectrodes. ChemSusChem, 2011. 4(4): p. 432-449.
34. Lin, Y., et al., Hematite-based solar water splitting: challenges and opportunities. Energy & Environmental Science, 2011. 4(12): p. 4862-4869.
35. Tamirat, A.G., et al., Using hematite for photoelectrochemical water splitting: a review of current progress and challenges. Nanoscale Horizons, 2016. 1(4): p. 243-267.
36. Cornell, R.M. and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses. 2003: John Wiley & Sons.
37. Zboril, R., M. Mashlan, and D. Petridis, Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications. Chemistry of Materials, 2002. 14(3): p. 969-982.
38. Lindgren, T., et al., Photo-oxidation of water at hematite electrodes. Chemical physics of nanostructured semiconductors, 2003: p. 83-110.
39. Hardee, K.L. and A.J. Bard, Semiconductor electrodes V. The application of chemically vapor deposited iron oxide films to photosensitized electrolysis. Journal of the Electrochemical Society, 1976. 123(7): p. 1024-1026.
40. Murphy, A., et al., Efficiency of solar water splitting using semiconductor electrodes. International journal of hydrogen energy, 2006. 31(14): p. 1999-2017.
41. Van de Krol, R. and M. Grätzel, Photoelectrochemical hydrogen production. Vol. 90. 2012: Springer.
42. Dare-Edwards, M.P., et al., Electrochemistry and photoelectrochemistry of iron (III) oxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1983. 79(9): p. 2027-2041.
43. Quinn, R.K., R.D. Nasby, and R.J. Baughman, Photoassisted electrolysis of water using single crystal. cap alpha. -Fe/sub 2/O/sub 3/ anodes. Mater. Res. Bull.; (United States), 1976: p. Medium: X; Size: Pages: 1011-1018.
44. Itoh, K. and J.O.M. Bockris, Stacked thin‐film photoelectrode using iron oxide. Journal of applied physics, 1984. 56(3): p. 874-876.
45. Itoh, K. and J.M. Bockris, Thin film photoelectrochemistry: iron oxide. Journal of the Electrochemical Society, 1984. 131(6): p. 1266-1271.
46. Horowitz, G., Capacitance-voltage measurements and flat-band potential determination on Zr-doped α-Fe2O3 single-crystal electrodes. Journal of electroanalytical chemistry and interfacial electrochemistry, 1983. 159(2): p. 421-436.
47. Sanchez, C., K. Sieber, and G. Somorjai, The photoelectrochemistry of niobium doped α-Fe2O3. Journal of electroanalytical chemistry and interfacial electrochemistry, 1988. 252(2): p. 269-290.
48. Liao, P., M.C. Toroker, and E.A. Carter, Electron transport in pure and doped hematite. Nano letters, 2011. 11(4): p. 1775-1781.
49. Ingler Jr, W.B., J.P. Baltrus, and S.U. Khan, Photoresponse of p-type zinc-doped iron (III) oxide thin films. Journal of the American Chemical Society, 2004. 126(33): p. 10238-10239.
50. Glasscock, J.A., et al., Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. The Journal of Physical Chemistry C, 2007. 111(44): p. 16477-16488.
51. Cesar, I., et al., Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: nanostructure-directing effect of Si-doping. Journal of the American Chemical Society, 2006. 128(14): p. 4582-4583.
52. Lin, Y., et al., Nanonet-based hematite heteronanostructures for efficient solar water splitting. Journal of the American Chemical Society, 2011. 133(8): p. 2398-2401.
53. Atabaev, T.S., Facile hydrothermal synthesis of flower-like hematite microstructure with high photocatalytic properties. Journal of Advanced Ceramics, 2015. 4(1): p. 61.
54. 黃桂武, 軟性印製透明導電高分子材料技術發展. 光速雙月刊, 2012. 102: p. 58-65.
55. Sun, D.C. and D.S. Sun, The synthesis and characterization of electrical and magnetic nanocomposite: PEDOT/PSS–Fe 3 O 4. Materials Chemistry and Physics, 2009. 118(2): p. 288-292.
56. Wang, K., et al., Enhanced performance of polymer solar cells using PEDOT: PSS doped with Fe3O4 magnetic nanoparticles aligned by an external magnetostatic field as an anode buffer layer. ACS applied materials & interfaces, 2014. 6(15): p. 13201-13208.
57. Taccola, S., et al., Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS applied materials & interfaces, 2013. 5(13): p. 6324-6332.
58. 吳慧屏 and 刁維光, 交流阻抗圖譜應用於染料敏化及鈣鈦礦太陽能電池之研究. 2013.
59. Porter, M.D., Combinatorial materials science. 2007: John Wiley & Sons.
60. 鄭信民 and 林麗娟, X 光繞射應用簡介. 工業材料雜誌 (181), 頁, 2002: p. 100-108.
61. Helmholtz coil. Available from: https://en.wikipedia.org/wiki/Helmholtz_coil.
62. Alam, J., U. Riaz, and S. Ahmad, Effect of ferrofluid concentration on electrical and magnetic properties of the Fe 3 O 4/PANI nanocomposites. Journal of Magnetism and Magnetic Materials, 2007. 314(2): p. 93-99.
63. Farag, A., Optical absorption of sodium copper chlorophyllin thin films in UV–vis–NIR region. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2006. 65(3): p. 667-672.
64. Sjöback, R., J. Nygren, and M. Kubista, Absorption and fluorescence properties of fluorescein. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 1995. 51(6): p. L7-L21.
65. De Kok, M., et al., Modification of PEDOT: PSS as hole injection layer in polymer LEDs. physica status solidi (a), 2004. 201(6): p. 1342-1359.
66. Bott, A.W., Electrochemistry of semiconductors. Current Separations, 1998. 17: p. 87-92.
67. Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. J. Chem. Educ, 2007. 84(4): p. 685.
68. Le Formal, F., et al., Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chemical Science, 2011. 2(4): p. 737-743.
69. 劉怡君, 摻雜碳之 α-Fe2O3 薄膜合成及水分解應用. 臺北科技大學資源工程研究所學位論文, 2010: p. 1-69.
校內:2022-08-25公開