簡易檢索 / 詳目顯示

研究生: 吳政達
Wu, Jeng-Da
論文名稱: 基於邊緣態之拓樸聲子晶體共振腔分析
The edge states analyses of a topological phononic crystal resonant cavity
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 98
中文關鍵詞: 拓樸絕緣體量子自旋霍爾效應邊緣模態拓樸聲子晶體共振腔共振腔
外文關鍵詞: topological insulators, quantum spin Hall effect, edge mode, topological phononic crystal resonant cavity, resonant cavity
相關次數: 點閱:109下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 拓樸絕緣體由兩種拓樸不等價結構組成,可形成邊緣模態並將聲波侷限在拓樸介面上穩定傳輸,本文使用聲子晶體建構拓樸絕緣體,利用邊緣模態設計拓樸聲子晶體共振腔,使得聲波圍繞腔體傳播形成環形共振。
    將具矩形散射柱的聲子晶體作正方晶格排列,使用有限元素軟體計算其能帶結構。改變散射柱旋轉角拉開雙狄拉克點得到拓樸不等價結構,以超晶胞法分析由兩拓樸不等價結構組成之介面,並於邊體關係圖中尋找能量集中於介面處之邊緣模態,接著透過全波模擬在結構中激發於邊緣模態頻率範圍之聲波,以直線與彎角的路徑驗證邊緣模態的魯棒性。
    設計由拓樸不等價結構組成之拓樸聲子晶體共振腔,得到環形共振模態,計算品質因子與聲壓,討論不同旋轉角度之散射柱構成的拓樸聲子晶體腔對於共振頻率的影響,探討當拓樸聲子晶體腔含有缺陷時和在缺陷處擺放待測物是否影響共振頻率以及品質因子。與傳統缺陷共振腔比較,拓樸聲子晶體腔的品質因子是前者的1.5倍至3倍,集中聲壓是前者的1倍到1.5倍。最後在拓樸聲子晶體腔下方引入波導,並類比量子自旋霍爾效應,探討自旋波源之單向波傳行為以及透過波導耦合的共振腔之品質因子。

    We propose a phononic crystal with rectangular scattering pillars arranged in a square lattice. The double Dirac cone is formed by modulating rectangular scattering pillars’ parameters. The rotation angle of the scattering pillars is changed to open the double Dirac cone and the topologically distinct structures are obtained. A supercell made by placing topologically distinct lattices adjacently. The bulk-edge correspondence is analyzed by the supercell method. The straight and bend paths are created to verify the robust edge mode. Topological phononic crystal resonant cavities are presented, which are composed of the topologically distinct structures. The quality factors and sound pressure of the topological cavities are analyzed. The influence of the topological cavity, which consist of scattering columns with different rotation angles, is investigated. The topological cavity with defects affects the resonance frequency and quality factor is discussed. The advantages of the topological cavity are the extremely high quality factors and the concentrated sound pressure larger than the defect cavity. A system of cavity-waveguide coupling is researched. The spin-locked unidirectional propagation caused by spin source are discussed finally.

    摘要 I 英文延伸摘要 II 致謝 IX 目錄 X 圖目錄 XIII 表目錄 XVIII 符號 XIX 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 聲子晶體 2 1-2-2 聲子晶體之能隙現象 2 1-2-3 聲子晶體共振腔 3 1-2-4 拓樸學與拓樸絕緣體 4 1-2-5 量子霍爾效應 5 1-2-6 量子自旋霍爾效應 5 1-2-7 量子能谷霍爾效應 6 1-3 本文架構 6 第二章 理論與數值方法 10 2-1 前言 10 2-2 固態物理學之基本定義 11 2-2-1 基本定義 11 2-2-2 實晶格與倒晶格(Reciprocal space) 11 2-2-3 布里淵區(Brillouin zones)與布洛赫定理(Bloch theorem) 13 2-3 有限元素法 14 2-3-1 有限元素法之基本概念 14 2-3-2 聲學模組之有限元素法推導 15 2-4 拓樸學 18 2-4-1 能帶理論 18 2-4-2 貝里相位(Berry phase)與能谷陳數(valley Chern number) 19 2-5 量子霍爾效應家族 20 2-5-1 整數量子霍爾效應 20 2-5-2 量子自旋霍爾效應 21 2-5-3 量子能谷霍爾效應 21 2-6 聲子晶體共振腔品質因子(Quality factor) 22 第三章 正方晶格排列之矩形散射柱拓樸聲子晶體 27 3-1 前言 27 3-2 幾何模型建立與能帶分析 27 3-2-1 晶格結構 27 3-2-2 二維拓樸聲子晶體之能帶結構分析 28 3-2-3 打破對稱改變矩形幾何之能帶結構分析 28 3-2-4 量子自旋霍爾效應之拓樸相變 28 3-3 邊體關係圖與拓樸邊緣模態之波傳分析 30 3-3-1 超晶胞法與邊體關係圖 30 3-3-2 直線全波模擬 30 3-3-3 具轉角之全波模擬 31 3-4 量子自旋霍爾效應與單向波傳分析 32 第四章 利用邊緣模態設計之拓樸聲子晶體共振腔與波導 53 4-1 前言 53 4-2 拓樸聲子晶體共振腔 53 4-2-1 拓樸聲子晶體共振腔設計 53 4-2-2 拓樸聲子晶體共振腔之改變角度設計 54 4-2-3 具缺陷之拓樸聲子晶體共振腔 55 4-3缺陷共振腔 56 4-3-1 缺陷共振腔設計 56 4-3-2 不同設計之共振腔比較 58 4-4 波導耦合進拓樸聲子晶體共振腔 58 4-4-1 一般型波導 58 4-4-2 拓樸型波導 59 4-4-3 不同設計之波導耦合拓樸聲子晶體共振腔比較 60 4-5 自旋波源激發之波導耦合進拓樸聲子晶體共振腔 60 第五章 綜合討論與未來展望 90 5-1 綜合討論 90 5-2 未來展望 91 參考文獻 92

    [1] D. J. Thouless, F. D. M. Haldane and J. M. Kosterlitz, "Scientific background: Topological phase transitions and topological phases of matter" The Nobel Prize in Physics, 2016
    [2] E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics." Physical Review Letters, Vol.58, pp.2059-2062 (1987)
    [3] S. John, "Strong localization of photons in certain disordered dielectric superlattices." Physical Review Letters, Vol.58, pp.2486-2489 (1987)
    [4] H. Zheng, S. Ravaine, "Bottom-up assembly and applications of photonic materials." Crystals, Vol.6, 54 (2016)
    [5] L, Brillouin, Wave propagation in periodic structures, 2nd ed. Dover, New York (1953)
    [6] L. Cremer, H. O. Leilich, “Zur theorie der Biegekettenleiter (On theory of flexural periodic systms),” Archiv der Elektrischen Ubertragung, Vol.7, pp.261-270 (1953)
    [7] M. A. Heckl, "Investigations on the vibrations of grillages and other simple beam structures." The Journal of the Acoustical Society of America,Vol.36, pp.1335-1343 (1964)
    [8] M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, "Acoustic band structure of periodic elastic composites." Physical Review Letters, Vol.71, pp2022-2025 (1993)
    [9] M. S. Kushwaha, P. Halevi, G. Martínez, L. Dobrzynski and B. Djafari-Rouhani, "Theory of acoustic band structure of periodic elastic composites." Physical Review B ,Vol.49, pp.2313-2322 (1994)
    [10] M. S. Kushwaha, P. Halevi, "Band‐gap engineering in periodic elastic composites." Applied Physics Letters, Vol.64, pp.1085-1087 (1994)
    [11] M. S. Kushwaha, "Classical band structure of periodic elastic composites." International Journal of Modern Physics B, Vol.10, pp.977-1094(1996)
    [12] R. Martínez-Sala, J. Sancho, J. V. Sánchez, V. Gómez, J. Llinares and F. Meseguer, "Sound attenuation by sculpture." Nature, Vol.378, p.241 (1995)
    [13] W. P. Yang, L. W. Chen, "The tunable acoustic band gaps of two-dimensional phononic crystals with a dielectric elastomer cylindrical actuator." Smart Materials and Structures, Vol.17, 015011 (2007)
    [14] A. Bousfia, E. H. El. Boudouti, B. Djafari-Rouhani, D. Bria, A. Nougaoui, V. R. Velasco "Omnidirectional phononic reflection and selective transmission in one-dimensional acoustic layered structures." Surface Science, Vol.482, pp.1175-1180 (2001)
    [15] B. Manzanares-Martínez, J. Sánchez-Dehesa and A. Håkansson, "Experimental evidence of omnidirectional elastic bandgap in finite one-dimensional phononic systems." Applied Physics Letters, Vol.85, pp.154-156 (2004)
    [16] M. S. Kushwaha, "Stop-bands for periodic metallic rods: Sculptures that can filter the noise." Applied Physics Letters, Vol.70, pp.3218-3220 (1997)
    [17] Z. Liu, C. T. Chan and P. Sheng, "Three-component elastic wave band-gap material." Physical Review B, Vol.65, 165116 (2002)
    [18] Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, "Locally resonant sonic materials." Science, Vol.289, pp.1734-1736 (2000)
    [19] X. Zhang, Z. Liu and Y. Liu, "The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance." The European Physical Journal B-Condensed Matter and Complex Systems, Vol.42, pp.477-482 (2004)
    [20] J. Y. Yeh, "Control analysis of the tunable phononic crystal with electrorheological material." Physica B: Condensed Matter, Vol.400, pp.137-144 (2007)
    [21] M. Ruzzene, A. Baz, "Control of wave propagation in periodic composite rods using shape memory inserts." Journal of Vibration and Acoustics, Vol.122, pp.151-159 (2000)
    [22] T. Chen, M. Ruzzene and A. Baz, "Control of wave propagation in composite rods using shape memory inserts: theory and experiments." Journal of Vibration and Control, Vol.6, pp.1065-1081 (2000)
    [23] K. Bertoldi, M. C. Boyce, "Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures." Physical Review B, Vol.77, 052105 (2008)
    [24] E. L. Thomas, T. Gorishnyy and M. Maldovan, "Colloidal crystals go hypersonic." Nature Materials, Vol.5, pp773-774 (2006)
    [25] J. Wen, G. Wang, D. Yu, H. Zhao and Y. Liu, "Theoretical and experimental investigation of flexural wave propagation in straight beams with periodic structures: Application to a vibration isolation structure." Journal of Applied Physics, Vol.97, 114907 (2005)
    [26] M. M. Sigalas, "Elastic wave band gaps and defect states in two-dimensional composites." The Journal of the Acoustical Society of America, Vol.101, pp.1256-1261 (1997)
    [27] F. Wu, Z. Hou, Z. Liu and Y. Liu, "Point defect states in two-dimensional phononic crystals." Physics Letters A, Vol.292, pp.198-202 (2001)
    [28] T. Miyashita, "Experimentally study of a sharp bending wave-guide constructed in a sonic-crystal slab of an array of short aluminum rods in air." IEEE Ultrasonics Symposium, Vol.2, pp.946-949 (2004)
    [29] X. Zhang, Z. Liu, Y. Liu and F. Wu, "Defect states in 2D acoustic band-gap materials with bend-shaped linear defects." Solid State Communications, Vol.130, pp.67-71 (2004)
    [30] X. Li, Z. Liu, "Coupling of cavity modes and guiding modes in two-dimensional phononic crystals." Solid State Communications, Vol.133, pp.397-402 (2005)
    [31] X. Li, Z. Liu, "Bending and branching of acoustic waves in two-dimensional phononic crystals with linear defects." Physics Letters A, Vol.338, pp.413-419 (2005)
    [32] L. Y. Wu, L. W. Chen and C. M. Liu, "Acoustic pressure in cavity of variously sized two-dimensional sonic crystals with various filling fractions." Physics Letters A, Vol. 373, pp.1189-1195 (2009)
    [33] L. Y. Wu, L. W. Chen and C. M. Liu, "Experimental investigation of the acoustic pressure in cavity of a two-dimensional sonic crystal." Physica B: Condensed Matter, Vol.404, pp.1766-1770 (2009)
    [34] L. Y. Wu, L. W. Chen and C. M. Liu, "Acoustic energy harvesting using resonant cavity of a sonic crystal." Applied Physics Letters, Vol.95, 013506 (2009)
    [35] L. Y. Wu, L. W. Chen, "Wave propagation in a 2D sonic crystal with a Helmholtz resonant defect." Journal of Physics D: Applied Physics, Vol.43, 055401 (2010)
    [36] J. K. Asbóth, L. Oroszlány and A. Pályi, "A short course on topological insulators." Lecture Notes in Physics, Vol.919 (2016)
    [37] M. Z. Hasan, C. L. Kane, "Colloquium: topological insulators." Reviews of Modern Physics, Vol.82, pp.3045-3067 (2010)
    [38] J. Jiao, T. Chen, H. Dai and D. Yu, "Observation of topological valley transport of elastic waves in bilayer phononic crystal slabs." Physics Letters A, Vol.383, 125988 (2019)
    [39] B. Z. Xia, T. T. Liu, G. L. Huang, H. Q. Dai, J. R. Jiao, X. G. Zang, D. J. Yu, S. J. Zheng and J. Liu, "Topological phononic insulator with robust pseudospin-dependent transport." Physical Review B, Vol.96, 094106 (2017)
    [40] Y. Yang, Z. H. Hang, "Topological whispering gallery modes in two-dimensional photonic crystal cavities." Optics Express, Vol.26, pp.21235-21241 (2018)
    [41] Y. Gong, S. Wong, A. J. Bennett, D. L. Huffaker and S. S. Oh, "Topological insulator laser using valley-Hall photonic crystals." ACS Photonics, Vol.7, pp.2089-2097 (2020)
    [42] Y. Zeng, U. Chattopadhyay, B. Zhu, B. Qiang, J. Li, Y. Jin, L. Li, A. G. Davies, E. H. Linfield, B. Zhang, Y. Chong and Q. J. Wang, "Electrically pumped topological laser with valley edge modes." Nature, Vol.578, pp.246-250 (2020)
    [43] K. V. Klitzing, G. Dorda and M. Pepper, "New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance." Physical Review Letters, Vol.45, pp.494-497 (1980)
    [44] Y. Zhang, Y. W. Tan, H. L. Stormer and P. Kim "Experimental observation of the quantum Hall effect and Berry's phase in graphene." Nature, Vol.438, pp.201-204 (2005)
    [45] R. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman and A. Alù, "Sound isolation and giant linear nonreciprocity in a compact acoustic circulator." Science, Vol.343, pp.516-519 (2014)
    [46] X. Ni, C. He, X. C. Sun, X. P. Liu, M. H. Lu, L. Feng and Y. F. Chen, "Topologically protected one-way edge mode in networks of acoustic resonators with circulating air flow." New Journal of Physics, Vol.17, 053016 (2015)
    [47] L. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner and W. T. M. Irvine, "Topological mechanics of gyroscopic metamaterials." Proceedings of the National Academy of Sciences, Vol.112, pp.14495-14500 (2015)
    [48] P. Wang, L. Lu and K. Bertoldi, "Topological phononic crystals with one-way elastic edge waves." Physical Review Letters, Vol.115, 104302 (2015)
    [49] C. L. Kane, E. J. Mele, "Quantum spin Hall effect in graphene." Physical Review Letters, Vol.95, 226801 (2005)
    [50] J. E. Hirsch, "Spin Hall effect." Physical Review Letters, Vol.83, pp1834-1837 (1999)
    [51] S. Murakami, N. Nagaosa and S. C. Zhang, "Dissipationless quantum spin current at room temperature." Science, Vol301, pp.1348-1351 (2003)
    [52] B. A. Bernevig, S. C. Zhang, "Quantum spin Hall effect." Physical Review Letters, Vol.96, 106802 (2006)
    [53] B. A. Bernevig, T. L. Hughes and S. C. Zhang, "Quantum spin Hall effect and topological phase transition in HgTe quantum wells." Science, Vol.314, pp.1757-1761 (2006)
    [54] W. Feng, C. C. Liu, G. B. Liu, J. J. Zhou and Y. Yao, "First-principles investigations on the berry phase effect in spin–orbit coupling materials." Computational Materials Science, Vol.112, pp.428-447 (2016)
    [55] O. A. Pankratov, S. V. Pakhomov and B. A. Volkov, "Supersymmetry in heterojunctions: Band-inverting contact on the basis of Pb1-xSnxTe and Hg1-xCdxTe." Solid State Communications, Vol.61, pp93-96 (1987)
    [56] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi and S. C. Zhang, "Quantum spin Hall insulator state in HgTe quantum wells." Science, Vol.318, pp.766-770 (2007)
    [57] Y. Li, Y. Wu and J. Mei, "Double Dirac cones in phononic crystals." Applied Physics Letters, Vol.105, 014107 (2014)
    [58] C. He, X. Ni, H. Ge, X. C. Sun, Y. B. Chen, M. H. Lu, X. P. Liu and Y. F. Chen, "Acoustic topological insulator and robust one-way sound transport." Nature Physics, Vol.12, pp.1124-1129 (2016)
    [59] L. H. Wu, X. Hu, "Scheme for achieving a topological photonic crystal by using dielectric material." Physical Review Letters, Vol.114, 223901 (2015)
    [60] Y. Chen, F. Meng and X. Huang, "Creating acoustic topological insulators through topology optimization." Mechanical Systems and Signal Processing, Vol.146, 107054 (2021)
    [61] J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang and Z. Liu, "Observation of topological valley transport of sound in sonic crystals." Nature Physics, Vol.13, pp.369-374 (2017)
    [62] J. Lu, C. Qiu, M. Ke and Z. Liu, "Valley vortex states in sonic crystals." Physical Review Letters, Vol116, 093901 (2016)
    [63] Y. Yang, Z. Yang and B. Zhang, "Acoustic valley edge states in a graphene-like resonator system." Journal of Applied Physics, Vol.123, 091713 (2018)
    [64] X. Ni, M. A. Gorlach, A. Alu and A. B. Khanikaev, "Topological edge states in acoustic Kagome lattices." New Journal of Physics, Vol.19, 055002 (2017)
    [65] 張泰榕,拓樸材料與拓樸能帶理論-台灣物理學會-物理雙月刊,2017
    [66] Z. G. Chen, R. Y. Chen, R. D. Zhong, J. Schneeloch, C. Zhang, Y. Huang, F. Qu, R. Yu, Q. Li, G. D. Gu and N. L. Wang, "Spectroscopic evidence for bulk-band inversion and three-dimensional massive Dirac fermions in ZrTe5." Proceedings of the National Academy of Sciences, Vol.114, pp.816-821 (2017)
    [67] N. Nagaosa, "A new state of quantum matter." Science, Vol.318, pp.758-759 (2007)
    [68] C. L. Kane, "Topological band theory and the ℤ2 invariant." Contemporary Concepts of Condensed Matter Science, Vol.6, pp.3-34 (2013)

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE