| 研究生: |
蘇春霖 Su, Chun-Lin |
|---|---|
| 論文名稱: |
阻礙恐懼記憶形成之研究 Disruption of Fear Memory Formation |
| 指導教授: |
簡伯武
Gean, Po-Wu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 記憶保留 、動眼期睡眠 、恐懼記憶 、焦慮症 、記憶固化 、杏仁核 |
| 外文關鍵詞: | fear memory, REM sleep, memory consolidation, anxiety disorder, amygdala, memory retention |
| 相關次數: | 點閱:81 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
各式各樣的外在環境刺激進入了人類大腦的杏仁核,經由與睡眠相關的恐懼記憶形成的機轉而形成相關的精神症狀。在以前的醫學文獻裡,雖然潛在的機轉尚未被釐清,但已經陸續有許多研究提出剝奪睡眠 (特別是剝奪動眼期睡眠) 可能影響學習與記憶。在這篇研究裡,我們發現剛獲得的情緒性記憶會受到某一段特定時期的動眼期睡眠剝奪之影響而減弱,這個動眼期睡眠窗(paradoxical sleep window)坐落在訓練後的第十三小時至第二十四小時之間。「記憶再現」(memory retrieval)所導致老鼠杏仁核內之Akt及MAPK等蛋白磷酸酶被磷酸化的情形也可以經由動眼期睡眠剝奪之影響而消弱。在訓練過程之前進行動眼期睡眠之剝奪並不會影響學習記憶的結果,這個部分顯示:動眼期睡眠剝奪不會對於「記憶獲得」(memory acquisition)產生作用。更進一步,動眼期睡眠剝奪又與一種同時具有蛋白去磷酸酶與脂質去磷酸酶雙重作用的蛋白質—PTEN的表現增加有關聯性。與對照組實驗結果明顯不同,訓練後第十三小時至第二十四小時之間的動眼期睡眠之剝奪會引起PTEN表現量的上升。而且,在杏仁核內注射PTEN的antisense型之寡核甘酸會防止動眼期睡眠剝奪所導致的蛋白質磷酸化之減少以及恐懼記憶之減弱情形,相反地,如果把PTEN的antisense型寡核甘酸置換成sense型或scrambled型之寡核甘酸,也就沒有上述結果。綜合這些研究發現,我們得到一個明確的結論:動眼期睡眠之剝奪會經由活化PTEN而干擾了「記憶保留」(memory retention)的過程。
另一方面,我們希望找出合適的臨床藥物以阻斷恐懼記憶的形成過程,以期望有效地預防焦慮症形成,降低焦慮症發生率,減少醫療資源之耗費。研究結果顯示:在恐懼記憶訓練後之十二小時內使用特定藥物(特別是lorazepam與midazolam)可以有效減少恐懼記憶的產生,如果能立即使用藥物,則不僅只能選用lorazepam與midazolam,使用情緒穩定劑(carbamazepine、valproate)或乙型交感神經抑制劑也有不錯的效果。如果使用上述有效的藥物,則越早使用藥物,預防效果越好。另外,使用lorazepam與midazolam阻礙恐懼記憶形成的效果與使用劑量之間有正向相關性。但是使用抗憂鬱劑,例如:三環抗憂鬱劑與選擇性5-羥色胺再吸收抑制劑,都沒有明顯效果。綜合上述結果,我們提出一個研究與治療焦慮症的新方向。
Several kinds of environmental stimuli enter the amygdala and result in related mental symptoms by the sleep-dependent mechanism responsible for fear memory formation. Although the underlying mechanism is not elucidated, it has been repeatedly postulated that deprivation of sleep, rapid eye movement (REM) sleep in particular, affects learning. Here we report that memory for newly acquired information is impaired following a specific period of REM sleep deprivation (REMD). The paradoxical sleep window (PS window) is ranged from the 13th to the 24th hours after training. REMD given before training is without effect suggesting the lack of effect on the acquisition of memory. Memory retrieval-induced phosphorylation of protein kinases in the rat amygdala is abrogated by REMD that is associated with an increase in the expression of a dual protein/lipid phosphatase PTEN. REMD during the PS window induced a significant increase in the expression of PTEN as compared with the control experiments. Intra-amygdala administration of antisense but not sense or scrambled oligonucleotides for PTEN prevents REMD-induced decrease in protein phosphorylation and impairment of fear memory. Thus, REMD interferes with the process of memory retention via activation of PTEN.
In addition, we aim to identify the optimum clinical drugs for preventing the formation of fear memory, therefore decreasing the incidence of anxiety disorders and the economical burden of healthcare system. Our results reveal that when drugs are administered immediately after fear training, lorazepam, midazolam, propranolol, carbamazepine and valproate are effective in disrupting the fear memory formation. However, when drugs are administered 6 hours after fear training, only lorazepam, midazolam, carbamazepine and valproate are effective. Furthermore, when drugs are administered 12 hours after fear training, only lorazepam and midazolam are effective. If we use theses drugs sooner, the effect will be better. However, antidepressants including tricyclics and SSRIs are ineffective at all the three time points. The further results show that there is a positive dose-effect relationship of lorazepam and midazolam on the prevention for fear memory formation. Consequently, we recommend such a new approach to anxiety disorders.
1. Diagnostic and Statistical Manual of Mental Disorders - Fourth Edition (DSM-IV), published by the American Psychiatric Association, Washington D.C., 1994.
2. Sanford, L.D., Tang, X., Ross, R.J., Morrison, A.R.: Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice. Behav Genet. 33:43-58, 2003.
3. Schafe, G.E., Nader, K., Blair, H.T. and LeDoux, J.E.: Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. Trends Neurosci. 24: 540-546, 2001.
4. Stickgold, R.: Sleep: off-line memory reprocessing. Trends Cognit. Sci. 2: 484-489, 1998.
5. McGaugh, J.L.: Memory – a century of consolidation. Science 287: 248-251, 2001.
6. Smith, C. and Rose, G.M.: Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol. Behav. 59: 93-97, 1996.
7. Fishben, W.: Disruptive effects of rapid eye movement sleep deprivation on long-term memory. Physiol. Behav. 6: 279-282, 1971.
8. Paerlman, C.A. and Greenberg, R.: Posttrial REM sleep: a critical period for consolidation of shuttlebox avoidance. Animal Learn. Behav. 1: 49-51, 1973.
9. Smith, C.T., Conway, J.M. and Rose, G.M.: Brief paradoxical sleep deprivation impairs reference, but not working memory in the radial arm maze task. Neurobiol. Learn. Memory 69: 211-217, 1998.
10. Smith, C. and Rose, G.M. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav. Neurosci. 111: 1197-1204, 1997.
11. Siegel, J.M.: The REM sleep-memory consolidation hypothesis. Science 294: 1058-1063, 2001.
12. Maquet, P.: The role of sleep in learning and memory. Science 294: 1048-1052, 2001.
13. Graves, L., Pack, A.I. and Abel, T.: Sleep and memory: a molecular perspective. Trends Neurosci. 24: 237-243, 2001.
14. Benington, J.H. and Frank, M.G.: Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 69: 71-101, 2003.
15. Lucero, M.: Lengthening of REM sleep duration consecutive to learning in the rat. Brain Res. 20: 319-322, 1970.
16. Graves, L., Heller, E.A., Pack, A.I. and Abel, T.: Sleep deprivation impairs memory consolidation for contextual fear conditioning. Learn. Mem. 10: 168-176, 2003.
17. Campbell, I.G., Guinan, M.J. and Horowitz, J.M.: Sleep deprivation impairs long-term potentiation in rat hippocampal slices. J. Neurophysiol. 88: 1073-1076, 2002.
18. Davis, C.J., Harding, J.W. and Wright, J.W.: Sleep deprivation induces deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res. 973: 293-297, 2003.
19. Ribeiro, S., Mello, C.V., Velho, T., Gardner, T.J., Jarvis, E.D. and Pavlides, C.: Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuring rapid-eye-movement sleep. J. Neurosci. 22: 10914-10923, 2002.
20. Vertes, R.P. and Eastman, K.E.: The case against memory consolidation in REM sleep. Behav. Brain Sci. 23: 867-876, 2000.
21. Morrison, A.R., Sanford, L.D. and Ross, R.J.: The amygdala: a critical modulator of sensory influence on sleep. Biol. Signals Recept. 9: 283-296, 2000.
22. Deboer, T., Ross, R.J., Morrison, A.R. and Sanford, L.D.: Electrical stimulation of the amygdala increases the amplitude of elicited ponto-geniculo-occipital waves. Physiol. Behav. 66: 119-124, 1999.
23. Deboer, T., Sanford, L.D., Ross, R.J. and Morrison, A.R.: Effects of electrical stimulation in the amygdala on ponto-geniculo-occipital waves in rats. Brain Res. 793: 305-310, 1998.
24. Sanford, L.D., Silvestri, A.J., Ross, R.J. and Morrison, A.R.: Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch. Ital. Biol. 139: 169-183, 2001.
25. Hennevin, E., Maho, C. and Hars, B.: Neuronal plasticity induced by fear conditioning is expressed during paradoxical sleep: evidence from simultaneous recordings in the lateral amygdala and the medial geniculate in rats. Behav. Neurosci. 112: 839-862, 1998.
26. Smith, C.T. : Sleep states, memory processes, and synaptic plasticity. Behav. Brain Res. 78: 49-56, 1996.
27. Pokk, P., Liljequist, S. and Zharkovsky, A.: Ro 15-4513 potentiates, instead of antagonizes, ethanol-induced sleep in mice exposure to small plateform stress. European J. Pharmacol. 317: 15-20, 1996.
28. Lu, K.T., Walker, D.L. and Davis M.: Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J. Neurosci. 21: 162-164, 2001.
29. Schafe, G.E., Atkins, C.M., Swank, M.W., Bauer, E.P., Sweatt, J.D. and LeDoux, J. E.: Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning. J. Neurosci. 20: 8177-8187, 2000.
30. Lin, C.H., Yeh, S.H., Lin, C.H., Lu, K.T., Leu, T.H., Chang, W.C. and Gean, P.W.: A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841-851, 2001.
31. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H. and Parsons, R.: PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943-1947, 1997.
32. Steck, P.A., Pershouse, M.A., Jasser, S.A., Yung, W.K.A., Lin, H., Ligon, A.H., Langford, L.A., Baumgard, M.L., Hattier, T., Davis, T., Frye, C., Hu, R., Swedlund, B., Teng, D.H.F. and Tavtigian, S.V.: Identification of a candidate tumor suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15: 356-362, 1997.
33. DiCristofano, A., Pesce, B., Cordon-Cardo, C. and Pandolfi, P.P.: PTEN is essential for embryonic development and tumor suppression. Nat. Genet. 19: 348-355, 1998.
34. Stambolic, V., Suzuki, A., Lois de la Pompa, J., Brothers, G.M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J.M., Siderovski, D.P. and Mak, T.W.: Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29-39, 1998.
35. Myers, M.P., Stolarov, J.P., Eng, C., Li, J., Wang, S.I., Wigler, M.H., Parsons, R. and Tonks, N.K.: PTEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl. Aca. Sci. U.S.A. 94: 9052-9057, 1997.
36. Maehama, T. and Dixon. J.E.: The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-triphosphate. J. Biol. Chem. 273: 13375-13378, 1998.
37. Lang, P.J., Davis, M. and Ohman, A.: Fear and anxiety: animal models and human cognitive psychophysiology. J. Affect. Disord. 61: 137-159, 2000.
38. Rauch, S.L., Shin, L.M. and Wright, C.I.: Neuroimaging studies of amygdala function in anxiety disorders. Ann. N. Y. Acad. Sci. 985: 389-410, 2003.
39. Anand, A. and Shekhar, A.: Brain imaging studies in mood and anxiety disorders: special emphasis on the amygdala. Ann. N. Y. Acad. Sci. 985: 370-388, 2003.
40. Ninan, P.T.: The functional anatomy, neurochemistry, and pharmacology of anxiety. J. Clin. Psychiatry 22: 12-17, 1999.
41. Grudzinski, A.N.: Considerations in the treatment of anxiety disorders: a pharmacoeconomic review. Expert. Opin. Pharmacother. 2: 1557-1569, 2001.
42. Grillon, C.: Startle reactivity and anxiety disorders: aversive conditioning, context, and neurobiology. Biol. Psychiatry 52: 958-975, 2002.
43. Morgan, C.A., Grillon, C., Southwick, S.M., Davis, M. and Charney, D.S.: Fear-potentiated startle in posttraumatic stress disorder. Biol. Psychiatry 38: 378-385, 1995.
44. Grillon, C., Ameli, R., Goddard, A., Woods, S.W. and Davis, M.: Baseline and fear-potentiated startle in panic disorder patients. Biol. Psychiatry 35: 431-439, 1994.
45. Davis, M., Falls, W.A., Campeau, S. and Kim, M.: Fear-potentiated startle: a neural and pharmacological analysis. Behav. Brain Res. 58: 175-198, 1993.
46. Sutherland, S.M. and Davidson, J.R.: Pharmacotherapy for post-traumatic stress disorder. Psychiatr. Clin. North. Am. 17: 409-423, 1994.
47. Mathew, S.J., Coplan, J.D. and Gorman, J.M.: Management of treatment-refractory panic disorder. Psychopharmacol. Bull. 35: 97-110, 2001.
48. Vaiva, G., Ducrocq, F., Jezequel, K., Averland, B., Lestavel, P., Brunet, A. and Marmar, C.R.: Immediate treatment with propranolol decreases posttraumatic stress disorder two months after trauma. Biol. Psychiatry 54: 947-949, 2003.
49. Reist, C., Duffy, J.G., Fujimoto, K. and Cahill, L.: Beta-Adrenergic blockade and emotional memory in PTSD. Int. J. Neuropsychopharmacol. 4: 377-383, 2001.
50. Keck, P.E., McElroy, S.L., Tugrul, K.C., Bennett, J.A. and Smith, J.M.: Antiepileptic drugs for the treatment of panic disorder. Neuropsychobiology 27: 150-153, 1993.
51. Ford, N.: The use of anticonvulsants in posttraumatic stress disorder: case study and overview. J. Trauma Stress. 9: 857-863, 1996.
52. Looff, D., Grimley, P., Kuller, F., Martin, A. and Shonfield, L.: Carbamazepine for PTSD. J. Am. Acad. Child Adolesc. Psychiatry 34: 703-704, 1995.
53. Fishbein, W. and Gutwein, B.M.: Paradoxical sleep and memory storage processes. Beh. Biol. 19: 425-464, 1977.
54. Pearlman, C.: REM sleep and information processing: evidence from animal studies. Neurosci. Biobehav. Rev. 3: 57-68, 1979.
55. Smith, C.T.: Sleep states, memory processes and synaptic plasticity. Beh. Brain Res. 78: 49-56, 1996.
56. Wilson, M.A. and McNaughton, B.L.: Reactivation of hippocampal ensemble memories during sleep. Science 265: 676-682, 1994.
57. Louie, K. and Wilson, M.A.: Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29: 145-156, 2001.
58. Hirase, H.: Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel experience. Proc. Natl. Aca. Sci. U.S.A. 98: 9286-9290, 2001.
59. Hoffman, D.A. and McNaughton, B.L.: Coordinated reacivation of distributed memory traces in primate cortex. Science 297: 2070-2073, 2002.
60. La Hosta, G., Gordon, W.C. and Bazan, N.G.: Role of stress hormones in sleep deprivation-induced memory impairment in rats. Abstract Society for Neuroscience Program No. 375.9, 2002.
61. Lin, C.H., Yeh, H.W., Leu, T.H., Chang, W.C., Wang, S.T. and Gean, P.W.: Identification of calcineurin as a key signal in the extinction of fear memory. J. Neurosci. 23: 1574-1579, 2003.
62. Lin, C.H., Yeh, S.H. and Gean, P.W.: The similarities and diversities of signal pathways leading to consolidation and extinction of fear memory. J. Neurosci. 23: 8310-8317, 2003.
63. Hall, J., Thomas, K.L. and Everitt, B.J.: Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. European J. Neurosci. 13: 1453-1458, 2001.
64. Seidenbecher, T., Laxmi, T.R., Stork, O. and Pape, H.C.: Amygdala and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301: 846-850, 2003.
65. Sanna, P.P., Cammalleri, M., Berton, F., Simpson, C., Lutjens, R., Bloom, F.E. and Francesconi, W.: Phosphatidylinositol-3-kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22: 3359-3365, 2002.
66. Man, H.Y., Wang, Q.H., Lu, W.Y., Ju, W., Ahmadian, G., Liu, L.D., D’Souza, S., Wong, T.P., Taghibigiou, C. and Lu, J.: Activation of PI3-kinase is required for AMPA receptor insertyion during LTP of mEPSCs in cultured hippocampal neurons. Neuron 38: 611-624, 2003.
67. Johansson, I.M., Birzniece, V., Lindblad, C., Olsson, T. and Backstrom, T.: Allopregnanolone inhibits learning in the Morris water maze. Brain Res.934: 125-131, 2002.
68. Clarkson, J.E., Gordon, A.M. and Logan, B.K.: Lorazepam and driving impairment. J. Anal. Toxicol. 28: 475-480, 2004.
69. Roehrs, T. and Roth, T.: Hypnotics: an update. Curr. Neurol. Neurosci. Rep. 3: 181-184, 2003.
70. Patten, S.B.: Propranolol and depression: evidence from the antihypertensive trials. Can. J. Psychiatry 35: 257-9, 1990.
71. Beghi, E.: Efficacy and tolerability of the new antiepileptic drugs: comparison of two recent guidelines. Lancet Neurol. 3: 618-21, 2004.
72. Rzany, B., Correia, O., Kelly, J.P., Naldi, L., Auquier, A. and Stern, R.: Risk of Stevens-Johnson syndrome and toxic epidermal necrolysis during first weeks of antiepileptic therapy: a case-control study. Lancet. 26: 2190-4, 1999.
73. Sinclair, D.B., Berg, M. and Breault, R.: Valproic acid-induced pancreatitis in childhood epilepsy: case series and review. J. Child Neurol. 19: 498-502, 2004.
74. Wilson, K. and Mottram, P.: A comparison of side effects of selective serotonin reuptake inhibitors and tricyclic antidepressants in older depressed patients: a meta-analysis. Int. J. Geriatr. Psychiatry. 19: 754-62, 2004.
75. Wernicke, J. F.: Safety and side effect profile of fluoxetine. Expert. Opin. Drug Safety 3:495-504, 2004.
76. Grozinger, M., Kogel, P. and Roschke, J.: Effects of Lorazepam on the automatic online evaluation of sleep EEG data in healthy volunteers. Pharmacopsychiatry. 31:55-59, 1998.
77. Lancel, M., Cronlein, T.A., Muller-Preuss, P. and Holsboer, F.: Pregnenolone enhances EEG delta activity during non-rapid eye movement sleep in the rat, in contrast to midazolam. Brain Res. May 646:85-94, 1994.
78. Nader, K., Schafe, G.E. and Le Doux, J.E.: Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 17;406:722-6, 2000.
79. Maquet, P., Peters, J., Aerts, J., Delfiore, G., Degueldre, C., Luxen, A. and Franck, G.: Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature. 12;383:163-6, 1996.
80. Christos, GA.: Is Alzheimer's disease related to a deficit or malfunction of rapid eye movement (REM) sleep? Med. Hypotheses 41: 435-439, 1993.
81. Stanciu, M., Radulovic, J. and Spiess, J.: Phosphorylated cAMP response element binding protein in the mouse brain after fear conditioning: relationship to Fos production. Mol Brain Res. 19;94: 15-24, 2001.
82. Rattiner, L.M., Davis, M., French, C.T. and Ressler, K.J.: Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. J Neurosci. 19;24: 4796-4806, 2004.
83. Zinebi, F., Xie, J., Liu, J., Russell, R.T., Gallagher, J.P., McKernan, M.G. and Shinnick-Gallagher, P.: NMDA currents and receptor protein are downregulated in the amygdala during maintenance of fear memory. J Neurosci. 12;23: 10283-10291, 2003.