| 研究生: |
張韡浩 Chang, Wei-Hao |
|---|---|
| 論文名稱: |
利用射頻磁控濺鍍法沉積類鑽碳薄膜及其特性分析 Study on Diamond-Like Carbon Thin Films Fabricated by RF Magnetron Sputtering Deposition |
| 指導教授: |
陳燕華
Chen, Yen-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 類鑽碳薄膜 、射頻磁控濺鍍 、拉曼光譜 、X光光電子能譜 、微觀導電性 、片電阻 |
| 外文關鍵詞: | Diamond-like carbon, Magnetron sputtering, Raman, XPS, AFM |
| 相關次數: | 點閱:129 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗以混和式碳來源(石墨靶、甲烷)之射頻磁控濺鍍法來製備類鑽碳薄膜,並且希望藉由調控濺鍍功率、工作氣氛、氣體流量等製程參數來改變薄膜中的sp3、sp2鍵結比例。有鑑於前人研究之分類、成長機構等皆混亂且較無標準,本研究希望能以方便且精準的方式來進行類鑽碳薄膜的特性分析。
製程參數選用純甲烷,工作壓力5 mtorr,氣體流量5 sccm,室溫下變動濺鍍功率:60、80、90、100、110、130、150 W;並將此七組不同製程參數之類鑽碳薄膜鍍製於非導電矽基板、導電矽基板及玻璃基板上,並分別進行薄膜表面形貌觀察、硬度測試、薄膜應力量測、鍵結狀態分析(拉曼光譜、X光光電子能譜)、能隙量測、微觀導電性分析及片電阻量測。拉曼光譜中主要分析G-band(~1580 cm-1)與D1-band(1350 cm-1)之偏移、ID/IG;XPS則是將C1s擬合出C-C(~285 eV)、C=C(~284 eV)、C-O(~286 eV),並以C-C代表sp3、C=C代表sp2。
經由拉曼光譜及X光光電子能譜之鍵結組態分析的結果顯示,濺鍍功率60~150 W之樣品中sp3的比例隨濺鍍率提升而升高,並且ID/IG、G-band位置對sp3含量之趨勢與前人研究相符,故本研究成功地結合拉曼光譜及X光光電子能譜之量測,初步建立類鑽碳的行為模式及特性分析。雖然硬度、能隙及導電能力則是受到多種因子影響,如膜厚、雜質、結構缺陷等共同控制,但還是由sp3/sp2之比例主宰。
Diamond-like carbon (DLC) thin films on p-Si (100) substrate, soda-lime glass substrate were deposited by RF magnetron sputtering at different parameters. By changing deposition temperature (25, 100, 200, 300°C) and RF power (60, 80, 90, 100, 110, 130, 150 W) to control properties of films. DLC is a member of carbon system, and Raman spectroscopy is a standard characterization technique for any carbon materials, here we use Raman spectroscopy to classify our films at first, and to discover which parameter has better efficacy. Raman spectroscopy analysis revealed two bands at ~1350 and ~1580 cm-1 called D-band and G-band, we focus on position-shifting and integrating of intensity ratio (ID/IG) of these band that can use to identify sp3/sp2 configuration in the films. ID/IG is a popular and significant index related to sp3/sp2. ID/IG decreases with the decreasing of sputtering energy, which means the higher energy caused more graphitization. Except Raman spectrum, the bonding structure could be investigated through XPS, using fitting software (XPSPEAK 4.1) to separate sp3, sp2, C-O, et cetera in C1s. But there is various way to explain these data and has no any standard for consulting. This study wants to sort out a clear, simple, and reproducible method that can avoid researchers confusing about the meaning of Raman and XPS studies. Furthermore, we also use AFM, UV-Vis, FE-SEM, et cetera instruments to figure out the properties of DLC films within changing the sputtering parameters.
[1]S. T. Lee, Z. Lin, X. Jiang, CVD diamond films: nucleation and growth, Mater. Sci. Eng. R., 25[4], p. 123-154, (1999).
[2]R. F. Davis, Diamond Films and Coatings Development, Properties, and Applications, Noyes Publications, Park Ridge, New Jersey, (1992).
[3]H. Liu, D. S. Dandy, Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages, Noyes Publications, Park Ridge, New Jersey, (1995).
[4]A. Lettington, J. W. Steeds, Thin Film Diamond, Chapman & Hall, New York, (1994).
[5]張振福,微波化學氣相沉積及磁控濺鍍成長類鑽石之研究,博士論文,中山大學,(2002)。
[6]Y. Yin, L. Hang, J. Xu, D. R. McKenzie, M. M. M. Bilek, Surface adsorption and wetting properties of amorphous diamond-like carbon thin films for biomedical applications, Thin Solid Films, 516, p. 5157-5161, (2008).
[7]E. Teng, C. Jiaa, A. Eltoukhy, Diamond-like carbon overcoat for magnetic thin film recording disks, Surface and Coating Technology, 68-69, p. 632-637, (1994).
[8]B. Bhushan, J. Ruan, Tribological performance of thin film amorphous carbon overcoats for maanetic recording rigid disks in various environments, Surface and Coating Technology, 68-69, p. 644-650, (1994).
[9]H. Kawahara, T. Sakairi, S. Momose, Y. Ishihara, H. Urai, ABS carbon overcoat films for highly reliable recording heads, NEC Research and Development, 37, p. 13-20, (1996).
[10]C. Meunier, F. Munnik, E. Germann, R. Schluechter, M.D. Pujol, S.N. Kondratiev, S. Mikhailov, DLC films on LiTaO3 for SAW devices, Surf. Coat. Technol., 180-181, p.234-237, (2004).
[11]R. Maalouf, A. Soldatkin, O. Vittori, M. Sigaud, Y. Saikali, H. Chebib, A.S. Loir, F. Garrelie, C. Donnet, N. Jaffrezic-Renault, Study of different carbon materials for amperometric enzyme biosensor development, M.S.E.C., 26, p.564-567, (2006).
[12]J. Tian, Q. Zhang, Q. Zhou, S.F. Yoon, J. Ahn, S.G. Wang, J.Q. Li, D.J. Yang, Study of well adherent DLC film deposited on piezoelectric LiTaO3 substrate, Applied Surface Science, 239, p. 255-258, (2005).
[13]S. Zhgoon, Q. Zhang, S.F. Yoon, A. Revkov, B. Gan, J. Ahn, Rusli, Surface acoustic waves in diamond-like carbon films on LiNbO3, Diamond Relat. Mater., 9, p. 1430-1434, (2000).
[14]S. Aisenberg, R. Chabot, Ion‐Beam Deposition of Thin Films of Diamond-like Carbon, J. Appl. Phys., 42, p. 2953-2958, (1971).
[15]L. Holland, S. M. Ojha, Deposition of hard and insulating carbonaceous films on an r.f. target in a butane plasma, Thin Solid Films, 38, L17-L19, (1976).
[16]J. C. Angus, C. C. Hayman, Low-pressure, metastable growth of diamond and "diamondlike" phases, Science, 241, p. 913-921, (1988).
[17]J. Robertson, The deposition mechanism of diamond-like a-C and a-C: H, Diamond and Related Materials, 3, p. 361-368, (1994).
[18]G. Dearnaley, J. H. Arps, Biomedical applications of diamond-like carbon (DLC) coatings: A review ,Surface and Coatings Technology, 200[7], p. 2518-2524, (2005).
[19]V. G. Litovchenko. and N.I. Klyui, Solar cells based on DLC film–Si structures for space application, Sol. Energy Mater. Sol. Cells, 68[1], p. 55-70, (2001).
[20]A. Erdemir, The role of hydrogen in tribological properties of diamond-like carbon films, Surface and Coatings Technology, 146-147, p. 292-297, (2001).
[21]劉國新,經非平衡磁控披覆鑽碳膜對銑刀磨耗性質之影響,碩士論文,成功大學,(1999)。
[22]D. Monaghan, D. G. Teer, P. A. Logan, I. Efeoglu, R. D. Arnell, Deposition of wear resistant coatings based on diamond like carbon by unbalanced magnetron sputtering, Surface and Coatings Technology, 60, p. 525-530, (1993).
[23]E. I. Meletis, A. Erdemir, G. R. Fenske, Tribological characteristics of DLC films and duplex plasma nitriding/DLC coating treatment, Surface and Coating Technology, 73, p. 39-45, (1995).
[24]M. Dai, K. Zhou, Z. Yuan, Q. Ding, Z. Fu, The cutting performance of diamond and DLC-coated cutting tools, Diamond and Related Materials, 9, p. 1753-1757, (2000).
[25]R. Hauert, A review of modified DLC coatings for biological applications, Diamond and Related Materials, 12, p. 583-589, (2003).
[26]A. H. Lettington, Applications of diamond-like carbon thin films, Carbon, 36, p. 555-560, (1998).
[27]陳肇英,類鑽碳薄膜材料技術與應用發展,工業材料,257,p. 154-162,(2008)。
[28]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics, John Wiley& Sons, Canada, Chapter 2, (1991).
[29]余樹貞,晶體之結構與性質,渤海堂文化公司,第12章,(1993)。
[30]C. Z. Wang, K. M. Ho, Structure, dynamics, and electronic properties of diamond-like amorphous carbon, Phys. Rev. Lett., 71[8], p. 1184-1187, (1993).
[31]T. Miyamoto, R. Kaneko, S. Miyaka, Tribological charactristics of amorphous carbon film investigated by point contact microscopy, J. Vac. Sci. Technol., 9, p.1336-1339, (1995).
[32]張瑞發,類鑽碳膜技術,化工資訊,四月號,p. 68-79,(1993)。
[33]C. D. Martino, F. Demichelis, A. Tagliaferro, Determination of the sp3/sp2 ratio in a-C:H films by infrared spectrometry analysis Diamond Relat. Mater., 4, p. 1210-1215, (1995).
[34]A. C. Ferrari, J. Robertson, Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond , Phil. Trans. R. Soc. Lond. A, 362[1824], p. 2477-2512, (2004)
[35]S. Neuville, A. Matthews, Hard carbon coatings: The way forward, MRS Bull.,22[9], p.22-26, (1997).
[36]X. Jiang, W. Beyer, K. Reichelt, Gas evolution from hydrogenated amorphous-carbon films, J. Appl. Phys., 68[3],p. 1378-1380, (1990).
[37]Z. L. Akkerman, H. Efstathiadis, F. W. Smith, Thermal stability of diamondlike carbon films, J. Appl. Phys., 80[5], p. 3068-3075, (1996).
[38]M. Ishihara, M. Suzuki, T. Watanabe, T. Nakamura, A. Tanaka, Y. Koga, Synthesis and characterization of fluorinated amorphous carbon films by reactive magnetron sputtering, Diamond and Related Materials, 14[3-7], p.989-993, (2005).
[39]J. Robertson, Preparation and properties of amorphous-carbon, J. Non-Cryst. Solids, 137, p.825-830, (1991).
[40]B. Marchon, M. R. Khan, N. Heiman, P. Pereira, Evidence for tribochemical wear on amorphous carbon thin films, IEEE Transaction on Magnetics, 26[1], p. 168-170, (1990).
[41]Y. Lifshitz, Diamond-like carbon—present status, Diamond and Related Materials, 8, p. 1659-1676, (1999).
[42]J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, K. L. Saenger, Vapor-deposition processes for amorphous-carbin films with sp3 fractions approaching diamond, J. Appl. Phys., 70[3], p.1706-1711, (1991).
[43]P. C. Kelires, C. H. Lee, W. R. Lambrecht, Structural studies and electronic-properties of diamond-like amorphous-carbon, J. Non-Cryst. Solids, 166, p. 1131-1134, (1993).
[44]方彥理,添加氮氣及氮氣電漿後處理對類鑽碳膜之影響,碩士論文,大同大學,(2009)。
[45]陳俊欽,類鑽碳奈米複合薄膜之研究,博士論文,成功大學,(2004)。
[46]B. Chapaman, Glow Discharge Processes-Sputtering and Plasma Etching, John Wiley & Sons, Canada, (1980).
[47]羅吉宗,薄膜科技與應用,全華圖書,(2009)。
[48]J. R. Roth, Industrial Plasma Engineering-v1: Principles, Institute of Physics Publishing, London, (1995).
[49]柯賢文,表面與薄膜處理技術,全華圖書,(2012)。
[50]D. P. Monaghan, D. G. Teer, K. C. Laing, I. Efeoglu, R. D. Arnell, Deposition of graded alloy nitride films by closed field unbalanced magnetron sputtering, Surf. Coat. Technol., 59[1-3], p.21-25, (1993).
[51]A. Fadini, F. M. Schnepel, Vibrational Spectroscopy-Methods and Applications, Ellis Horwood Limited, England, (1989).
[52]P. F. McMillan, Vibrational spectroscopy in the mineral sciences, Mineral. Soc. of Am., 14, p.9-63, (1985).
[53]何以侃,儀器分析,文京圖書有限公司,(1997)。
[54]F. Tuinstra, J. L. Koenig, Raman Spectrum of Graphite, Journal of Chemical Physics, 53[3], p. 1126-1130, (1970).
[55]O. Beyssac, B. Goffe, C. Chopin, J. N. Rouzaud, Raman spectra of carbonaceous material in metasediments: a new geothermometer., J. Metamorph. Geol., 22, p. 859-871, (2002).
[56]M. Cardona, Light scattering in Solids (III), Springer-Verlag Belin Heidelberg, New York, (1975), 3-42.
[57]呂俊擷,以化學氣相沈積法控制單層與雙層石墨於圖紋化矽基板之成長,碩士論文,清華大學,(2009)。.
[58]R. Al-Jashi, G. Dresselhaus, Lattice-dynamical model for graphite, Phys. Rev. B[26], p. 4514-4522, (1982).
[59]R. J. Nemanich, S. A. Solin, First and second-order Raman scattering from finite-size crystal of graphite., Phys. Rev. B[20], p. 392-401, (1979).
[60]R. Vuppuladhadium, H. E. Jackson, R. L. C. Wu, Raman-scattering from hydrogenated amorphous-carbon films, J. Appl. Phys., 77[6], p. 2714-2718, (1995).
[61]H. C. Tsai, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton, S. T. Mayar, Structure and properties of sputtered carbon overcoats on rigid magnetic media disks, J. Vac. Sci. Technol. A, 6[4], p. 2307-2315, (1988).
[62]M. Nakamizo, R. Kammereck, J. Walker, Laser Raman studies on carbons, Carbon, 12, p. 259-269, (1974).
[63]S. Reich, C. Thomsen, Raman spectroscopy of graphite, Phil. Trans. R. Soc. Lond. A, 362, p. 2271-2288, (2004).
[64]H. Maeta, Y. Sato, Raman spectra of neutron-irradiated pyrolytic graphite, Solid State Commun, 23, p. 23-25, (1997).
[65]R. J. Nemanich, S. A. Solin, First and second-order Raman scattering from finite-size crystals of graphite, Phys. Rev. B, 20, p. 392-401, (1979).
[66]D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, E. Iglesia, Structure and Electronic Properties of solid Acids Based on Tungsten Oxide Nanostructures, Journal of Physical Chemistry B, 103, p. 630-640, (1999).
[67]J. Tauc, Optical properties and electronic structure of amorphous Ge and Si, Materials Research Bulletin, 3, p. 37-46, (1968).
[68]黃英碩,掃描探針顯微術的原理及應用,科儀新知,26[4],p. 7-17,(1994)。
[69]莊耿林,以霍爾效應量測法對氮化鎵半導體作電性分析,碩士論文,中山大學,(2003)。
[70]G. G. Harman, T. Higier, Some properties of dirty contact on semiconductors and resistivity measurements by a two-terminal method, J. Appl. Phys., 33[7], p. 2198, (1962).
[71]M. W. Denhoff, An accurate calculation of spreading resistance, J. Phys. D: Appl. Phys. 39, p. 17-61, (2006).
[72]N. N. Polyakov, V. L. Kon´kov, Spreading resistance of a flat circular contact, Russian Physic Journal, 13, p. 1203-1207, (1970).
[73]D. K. Schroder, Semiconductor material and device characterization, John Wiley& Sons New York, p. 2-34, (1990).
[74]W. R. Runyan, T. J. Shaffner, Semiconductor Measurement and Instrumentation, New York, McGraw Hill, (1998).
[75]L. J. Van der Pauw, A method of measuring specific resistivity and Hall effect of discs of arbitrary shape, Philips Research Reports, 13, p. 1-9, (1958).
[76]S. H. Lim, D. R. McKenzie, M. M. Bilek, M. M. M. Bilek, van der Pauw method for measuring resistivity of a plane sample with distant boundaries, Rev. Sci. Instrum., 80, p. 75-109, (2009).
[77]D. Tabor, The hardness of metal, Oxford Univ. Press., (1951).
[78]B. Bhushan, Handbook of micro/nanotribology, 2nd ed., CRC Press, Boca Raton, (1999).
[79]W. C. Oliver, G. M. Pharr, An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiment, J. Mater. Res.,7, (1992), 1564-1583.
[80]T. Y. Tsui, W. C. Oliver and G. M. Pharr, Influences of stress on the measurement of mechanical properties using nano-indentation: Part1. Experimental studies in an aluminum alloy, Journal of Material Research, vol.11, p. 752-759, (1996).
[81]G. G. Stoney, The tension of thin metallic films deposited by electrolysis, Proceedings of the Royal Society of London, Series A, 82[553], p. 172-175, (1909).
[82]M. Madou, Fundamentals of microfabrication: The science of miniaturization, Boca Raton, FL: CRC Press, (2002).
[83]陳炳州,以拉曼光譜研究由磁控濺鍍合併電子迴旋共振系統所成長的類鑽石薄膜,碩士論文,成功大學,(2002)。
[84]王一大,含氫非晶質碳薄膜的拉曼光譜特性研究,碩士論文,中央大學,(2010)。
[85]童文俊、丁秉鈞、李恒政、李兵虎、徐永東,碳滑板材料石墨化度XRD和Raman光譜研究,材料導報網刊第五期,p. 52-54,(2006)。
[86]H. W. Tien, Y. L. Huang, S. Y. Yang, J. Y. Wang, C. C. M. Ma, The production of graphene nanosheets decorated with silver nanoparticles for use in transparent, conductive films, Carbon, 49[5], p. 1550-1560, (2011).
[87]J. Robertson, Diamond-like amorphous carbon, Mater: Sci. Eng., R Rep., 37[4-6], p.129-281, (2002).
[88]N. Tomozeiu, A. Hart, B. leinsorge, W. I. Miline, Optical and electrical properties of a-C:H deposited by magnetic confinement of rf-PECVD plasma, Diamond and Related Materials, 8, p. 522-526, (1999).
[89]G. Jungnickel, Th. Köhler, M. Hasse, Th. Frauenheim, P. Blaudeck, U. Stephen, Structure and chemical bonding in amorphous diamond, Diamond and Related Materials, 5[2], p. 175-185, (1996).
[90]S. R. P. Silva, Rusli, K. P. Homewood, G. A. J. Amaratunga, Superlattice structures based on amorphous carbon, Journal of Non-Crystalline Solids, 227-230[2], p. 1137-1141, (1998).
[91]A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E. Crossan, F. Placido, J. Phys. D: Appl. Phys., 38, p. 266-271, (2005).
[92]朱訓鵬、黃吉川、張自恭、翁政義,以分子動力學模擬分析濺鍍製程參數對薄膜表面粗糙度之影響,微系統科技協會季刊第五期,p. 53-60,(2001)。
[93]F. Meng, X. Song, Z. Sun, Photocatalytic activity of TiO2 thin films deposited by magnetron sputtering, Vaccum, 83, p. 1147-1151, (2009).
[94]A. Grill, Electrical and optical properties of diamond-like carbon, Thin Solid Films, 355-356, p.189-193, (1999).
[95]X. B. Yan, T. Xu, S. R. Yang, H. W. Liu, Q. J. Xue, Characterization of hydrogenated diamond-like carbon films electrochemically deposited on silicon substrate, J. Phys. D: Appl. Phys., 37, p. 2416-2424, (2004).
[96]Namwoong Paik, Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source, Surface & Coatings Technology, 200,
p. 2170-2174, (2005).
[97]R. O. Dillon, J. A. Woollam, Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films, Phys. Rev. B, 29, p. 3482-3489, (1984).
[98]黃恩萍,鑽石及碳質物之高溫高壓拉曼光譜研究,博士論文,成功大學,(2010)。
[99]J. Filik, P. W. May, S. R. J. Pearce, R. K. Wild, K. R. Hallam, XPS and laser Raman analysis of hydrogenated amorphous carbon films, Diamond and Related Materials, 12, p. 974-978, (2003).
[100]Hua Pang, Xingquan Wang, Guling Zhang, Huan Chen, Guohua Lv, Size Yang, Characterization of diamond-like carbon films by SEM, XRD and Raman spectroscopy, Applied Surface Science, 256, p. 6403-6407, (2010).
[101]M. Rubio-Roy, C. Corbella, J. Garcia-Céspedes, M. C. Polo, E. Pascual, J. L. Andújar, E. Bertran, Diamond like carbon films deposited from graphite target by asymmetric bipolar pulsed-DC magnetron sputtering, Diamond and Related Materials, 16, p. 1286-1290, (2007).
[102]Hyun S. Myung, Yong S. Park, B. Hong, Jeon G. Han, Young H. Kim, Jeong Y. Lee, Leonid R. Shaginyan, Effect of target power density on the synthesis and physical properties of sputtered nc-C films, Thin Solid Films, 494, p. 123-127, (2006).
[103]Vinícius Z. Rizzo, Ronaldo D. Mansano, Electro-optically sensitive diamond-like carbon thin films deposited by reactive magnetron sputtering for electronic device applications, Progress in Organic Coatings, 70, p. 365-368, (2011).
[104]D. Sekiba, N. Takemoto, M. Okada, S. Ishii, T. Sakurai, K. Akimoto, Hydrogen isotope tracer experiment in a-C:H film deposition: Reactive RF magnetron sputtering with CH4 and D2, Diamond and Related Materials, 27-28, p. 60-63, (2012).
[105]T. Nguyen, S. Ulrich, J. Bsul, S. Beauvais, W. Burger, A. Albers, M. Stüber, J. Ye, Influence of argon gas pressure and target power on magnetron plasma parameters, Diamond and Related Materials, 18, p. 995-998, (2009).
[106]Junqi Xu, Huiqing Fan, Weiguo Liu, Lingxia Hang, Large-area uniform hydrogen-free diamond-like carbon films prepared by unbalanced magnetron sputtering for infrared anti-reflection coatings, Diamond and Related Materials, 17, p. 194-198, (2008).
校內:2026-12-31公開