簡易檢索 / 詳目顯示

研究生: 王瑞欣
Wang, Jui-Hsin
論文名稱: 建立台灣住家PM2.5及其金屬元素穿透係數之研究
Estimation of infiltration factors of PM2.5 and metal elements for households in Taiwan
指導教授: 蘇慧貞
Su, Huey-Jen
共同指導教授: 榮建誠
Jung, Chien-Cheng
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 125
中文關鍵詞: 穿透係數細懸浮微粒通風換氣效率金屬元素
外文關鍵詞: Infiltration factor (Finf), Fine particulate matter, Ventilation rate, Metal element.
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去許多研究指出暴露於室內細懸浮微粒 (Fine particulate matter, PM2.5) 會對人類生心理造成健康不良效應,因此釐清PM2.5污染源也成為降低PM2.5濃度對人類造成健康危害的重要手段。然而,除了人為活動會影響室內PM2.5濃度的分佈外,室外空氣品質也是影響室內PM2.5濃度的重要因子。為釐清室內、外分別對室內PM2.5濃度的貢獻,PM2.5穿透係數 (Infiltration factor, Finf) 被廣泛應用在量化室內與室外對室內PM2.5的貢獻量。穿透係數的估算法主要有兩種,一是透過量測空氣交換率、微粒沉積率和滲透效率等參數來估算,此以質量平衡推導公式估算法較為準確,但需耗費大量成本來取得參數;另一類是直接利用室內、外PM2.5濃度建立線性迴歸方程式來估算穿透係數,但此方法尚未完整考量空氣交換率等參數,可能會有推估上的不確定性。然兩種方法均假設穿透係數無時間與空間上的變異,但實際上,環境中的穿透係數會因不同時間或空間的人為活動或通風換氣效率的改變而有所別。考量兩者方法之限制,在無法取得室內通風換氣效率和微粒滲透效率等參數的前提下,若能建立本土化的PM2.5穿透係數推估模型,並考量時間與空間的變異,應有利於推估室內、外對室內PM2.5濃度的貢獻。此外,由於PM2.5中含有許多金屬元素,過去研究均指出Zn、Pb、Mn、V、Cr和Cd等金屬元素,具有顯著的健康危害風險,因此,若能計算特定金屬元素的穿透係數,對於掌握室內金屬元素的來源和量化因暴露此類金屬元素造成的健康危害貢獻亦有助益。
    本研究共採集台南地區的62間住家之室內外PM2.5和二氧化碳濃度,並搭配質量平衡推導公式計算各住家PM2.5穿透係數 (應變數),再以住家建築特性和人為活動等問卷資料及室內,外微氣候做為多元線性迴歸模式之自變項,以逐步迴歸分析方法分別建立不同時間 (日與夜) 與區域 (都會和郊區) 之住家PM2.5穿透係數推估模式。同時利用電感耦合等離子體質譜 (Inductively Coupled Plasma Mass Spectrometry, ICP-MS)分析37間家戶之金屬微粒濃度,進一步利用與計算PM2.5穿透係數相同的公式,計算PM2.5之Al、Zn、Pb、Mn、V、Cr和Cd的穿透係數。
    從整體PM2.5穿透係數結果顯示平均值為0.70±0.19,然若進行時間分層則發現日間 (0.73±0.21) 的穿透係數顯著高於夜間 (0.66±0.23) (p=0.013),雖然市、郊區之穿透係數沒有顯著差異,但在研究中,郊區的穿透係數較市區高,平均值分別為0.72±0.19和0.68±0.19。建立的PM2.5穿透係數若無依時間與區域進行分層,其解釋力僅0.09 (R2),當僅以時間或區域分層時,模式的解釋力仍偏低 (R2=0.19-0.38);但依日間-市區、夜間-市區、日間-郊區和夜間-郊區4個組別分別建模後,模式的解釋力提高到0.36-0.75 (R2)。其中,室內外微氣候、建築特性和人為活動為PM2.5穿透係數的影響因子,但不同組別間,模式挑選出之變項存在差異,如溫度在各模式皆有顯著正相關,而濕度僅在日間-市區有顯著正相關,有使用空調僅在日間-郊區及夜間郊區有顯著正相關。在金屬元素部分,穿透係數由高至低依序為Pb (0.95±0.56)、Cd (0.91±0.43)、V (0.89±0.28)、Mn (0.84±0.35)、Al (0.78±0.29)、Cr (0.78±0.57)及Zn (0.74±0.53)。
    本研究PM2.5之穿透係數在日、夜間有顯著差異,市、郊區無顯著差異;此外,依日間-市區、夜間-市區、日間-郊區和夜間-郊區分別建立之PM2.5穿透係數的推估模型具有較佳解釋力,說明根據時間與空間建立推估模式有其必要性。金屬微粒之穿透係數最高為Pb,Cd次之,而Zn為最小,市區及郊區間的穿透係數並無顯著差異。計算PM2.5及金屬穿透係數將可釐清室內外PM2.5及金屬微粒濃度對於室內整體環境的貢獻,有助於研擬改善室內PM2.5污染之策略,以及提供後續健康風險之計算。而利用室內外微氣候、建築特性和人為活動建立微粒穿透係數推估模式將可提供未來相關研究能以快速且耗費低成本的方法取得穿透係數的資料。

    The infiltration factor (Finf) calculated by mass balance equation is a widely used method for quantifying the contribution of indoor and outdoor sources to indoor PM2.5 and metal concentrations. However, Finf variations across time and locations were not considered fully in previous studies. Additionally, it often requires significant money, time, and manpower. Therefore, the study aims to calculate Finf of PM2.5 and metals in different time periods and establish the estimation model of PM2.5 Finf. We collected indoor and outdoor environmental data and PM2.5 concentrations from 62 study homes in Tainan where metals (Zn, V, Pb, Mn, Cd and Cr) in PM2.5 were further quantified. Mass balance equation was used to calculate the PM2.5 and metals Finf. Afterward, we applied a multiple regression model (stepwise) to build the estimation model of PM2.5 Finf taking into account the weather factors, occupants’ behaviors, and building characteristics. Stratification analyses by time (day and night) and locations (urban and suburb) were also performed. The mean Finf±SD of Tainan residences during the morning and night is 0.74±0.21 and 0.66±0.23, respectively, with significant difference (p=0.013). Based on the estimation model, temperature and humidity, turning on the air conditioning, and cooking are found to be the main factors affecting the PM2.5 Finf. In addition, the Finf of metal particles is the highest for Pb, followed by Cr, and Zn is the smallest. The Finf of PM2.5 and metal compositions in PM2.5 are valuable information for developing improvement strategies for controlling and mitigating indoor PM2.5 pollution. Moreover, the estimation model is also established as a fast and low-cost method to estimate PM2.5 Finf.

    摘要i 致謝vii 目錄ix 第1章 緒論1 1-1 研究背景與現況1 1-2 研究目的4 第2章 文獻回顧5 2-1 懸浮微粒5 2-1-1 懸浮微粒的定義5 2-1-2 細懸浮微粒之化學組成7 2-2 懸浮微粒之健康危害9 2-2-1 室外細懸浮微粒之暴露9 2-2-2 暴露室內細懸浮微粒之健康危害14 2-3 室內細懸浮微粒來源17 2-4 評估細懸浮微粒室內外濃度貢獻21 2-4-1 穿透係數 (Infiltration factor)介紹及重要性21 2-4-2 估算穿透係數方法及現況23 2-4-3 影響穿透係數之因子24 第3章 材料與方法28 3-1 研究架構28 3-2 環境品質資料30 3-3 穿透係數計算與相關參數32 3-4 空氣微粒中金屬元素分析36 3-4-1 金屬元素的採樣36 3-4-2 金屬元素分析方法36 3-4-3 品保及品管規範40 3-5 金屬元素穿透係數相關參數的估算或來源42 3-6 不同時間與空間的分層43 3-7 統計分析44 3-7-1 差異性檢定44 3-7-2 常態分佈檢定44 3-7-1 多變項考量之穿透係數評估44 3-7-2 敏感度分析及模式驗證45 第4章 結果47 4-1 研究資料之描述性統計47 4-1-1 室內外環境資料描述47 4-1-2 建築特性的描述51 4-1-3 室內人員活動特性調查53 4-2 空氣交換率、PM2.5滲透效率與沉積率之分佈56 4-3 PM2.5穿透係數值時空分佈58 4-4 PM2.5之穿透係數模式建立59 4-5 敏感度分析模式驗證70 4-6 PM2.5中金屬微粒濃度分析結果74 4-7 金屬分析採樣住家之空氣交換率、金屬滲透效率與沉積率之分佈78 4-8 PM2.5中金屬微粒穿透係數分佈82 第5章 討論84 5-1 採樣資料的代表性84 5-2 住家空氣交換率、PM2.5滲透效率、沉積率與PM2.5穿透係數86 5-3 住家PM2.5及金屬穿透係數分佈92 5-4 室內、外金屬濃度及可能排放源探討99 5-5 探討變項對PM2.5穿透係數的影響104 5-6 研究限制111 第6章 結論與建議112 6-1 結論112 6-2 建議113 參考文獻114

    Abadie M, Limam K, Allard F. 2001. Indoor particle pollution: effect of wall textures on particle deposition. Building and Environment 36: 821-7.
    Abdel-Salam MM. 2021. Outdoor and indoor factors influencing particulate matter and carbon dioxide levels in naturally ventilated urban homes. Journal of the Air & Waste Management Association 71: 60-9.
    Allen R, Larson T, Sheppard L, Wallace L, Liu L-JS. 2003. Use of real-time light scattering data to estimate the contribution of infiltrated and indoor-generated particles to indoor air. Environmental science & technology 37: 3484-92.
    Allen RW, Adar SD, Avol E, Cohen M, Curl CL, Larson T, et al. 2012. Modeling the residential infiltration of outdoor PM2. 5 in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environmental health perspectives 120: 824-30.
    Anderson JO, Thundiyil JG, Stolbach A. 2012. Clearing the air: a review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology 8: 166-75.
    Apte K, Salvi S. 2016. Household air pollution and its effects on health. F1000Research 5.
    Azuma K, Ikeda K, Kagi N, Yanagi U, Osawa H. 2018. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants. Science of the total Environment 616: 1649-55.
    Badaloni C, Cesaroni G, Cerza F, Davoli M, Brunekreef B, Forastiere F. 2017. Effects of long-term exposure to particulate matter and metal components on mortality in the Rome longitudinal study. Environment international 109: 146-54.
    Bai L, He Z, Chen W, Wang Y. 2020. Distribution characteristics and source analysis of metal elements in indoor PM2. 5 in high-rise buildings during heating season in Northeast China. Indoor and Built Environment 29: 1087-100.
    Bai L, He Z, Ni S, Chen W, Li N, Sun S. 2019. Investigation of PM2. 5 absorbed with heavy metal elements, source apportionment and their health impacts in residential houses in the North-east region of China. Sustainable Cities and Society 51: 101690.
    Bai L, Su X, Zhao D, Zhang Y, Cheng Q, Zhang H, et al. 2018. Exposure to traffic-related air pollution and acute bronchitis in children: season and age as modifiers. J Epidemiol Community Health 72: 426-33.
    Balasubramanian R, Qian W. 2004. Characterization and source identification of airborne trace metals in Singapore. Journal of Environmental Monitoring 6: 813-8.
    Barnett AG, Williams GM, Schwartz J, Neller AH, Best TL, Petroeschevsky AL, et al. 2005. Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. American journal of respiratory and critical care medicine 171: 1272-8.
    Basagaña X, Jacquemin B, Karanasiou A, Ostro B, Querol X, Agis D, et al. 2015. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: results from the MED-PARTICLES project. Environment international 75: 151-8.
    1993. Indoor air quality and HVAC systems: CRC Press.
    2007. Progress in corrosion research: Nova Publishers.
    Bi D, Qiu Y, Cheng H, Zhou Q, Liu X, Chen J, et al. 2018. Seasonal characteristics of indoor and outdoor fine particles and their metallic compositions in Nanjing, China. Building and Environment 137: 118-26.
    Bootdee S, Chantara S, Prapamontol T. Indoor PM2. 5 and its Polycyclic Aromatic Hydrocarbons in Relation with Incense Burning. In: Proceedings of the IOP Conference Series: Earth and Environmental Science, 2018, Vol. 120. IOP Publishing, 012007.
    Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, et al. 2019. The impact of household air cleaners on the chemical composition and children's exposure to PM2. 5 metal sources in suburban Shanghai. Environmental Pollution 253: 190-8.
    Bullová I, Kapalo P, Katunský D. 2021. Quantification of Air Change Rate by Selected Methods in a Typical Apartment Building. Buildings 11: 174.
    Buteau S, Shekarrizfard M, Hatzopolou M, Gamache P, Liu L, Smargiassi A. 2020. Air pollution from industries and asthma onset in childhood: A population-based birth cohort study using dispersion modeling. Environmental Research: 109180.
    Cai Y, Hodgson S, Blangiardo M, Gulliver J, Morley D, Fecht D, et al. 2018. Road traffic noise, air pollution and incident cardiovascular disease: a joint analysis of the HUNT, EPIC-Oxford and UK Biobank cohorts. Environment international 114: 191-201.
    Cakmak S, Hebbern C, Pinault L, Lavigne E, Vanos J, Crouse DL, et al. 2018. Associations between long-term PM2. 5 and ozone exposure and mortality in the Canadian Census Health and Environment Cohort (CANCHEC), by spatial synoptic classification zone. Environment international 111: 200-11.
    Chang J-H, Hsu S-C, Bai K-J, Huang S-K, Hsu C-W. 2017. Association of time-serial changes in ambient particulate matters (PMs) with respiratory emergency cases in Taipei's Wenshan District. PloS one 12: e0181106.
    Chao C. 2003. Penetration coefficient and deposition rate as a function of particle size in non-smoking naturally ventilated residences. Atmospheric Environment 37: 4233-41.
    Chen A, Gall ET, Chang VW. 2016. Indoor and outdoor particulate matter in primary school classrooms with fan-assisted natural ventilation in Singapore. Environmental Science and Pollution Research 23: 17613-24.
    Chen C, Zhao B. 2011. Review of relationship between indoor and outdoor particles: I/O ratio, infiltration factor and penetration factor. Atmospheric Environment 45: 275-88.
    Chen X-C, Ward TJ, Cao J-J, Lee S-C, Lau N-C, Yim SH, et al. 2019. Source identification of personal exposure to fine particulate matter (PM2. 5) among adult residents of Hong Kong. Atmospheric Environment 218: 116999.
    Choi DH, Kang DH. 2017. Infiltration of ambient PM2. 5 through building envelope in apartment housing units in Korea. Aerosol Air Qual. Res 17: 598-607.
    Chuang H-C, Ho K-F, Lin L-Y, Chang T-Y, Hong G-B, Ma C-M, et al. 2017. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environment international 106: 91-6.
    Cifuentes LA, Vega J, Köpfer K, Lave LB. 2000. Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants on daily mortality in Santiago, Chile. Journal of the Air & Waste Management Association 50: 1287-98.
    Clark NA, Allen RW, Hystad P, Wallace L, Dell SD, Foty R, et al. 2010. Exploring variation and predictors of residential fine particulate matter infiltration. International journal of environmental research and public health 7: 3211-24.
    Cohen BS, Xiong JQ, Fang C-P, Li W. 1998. Deposition of charged particles on lung airways. Health Physics 74: 554-60.
    Collins M, Dempsey S. 2019. Residential energy efficiency retrofits: potential unintended consequences. Journal of Environmental Planning and Management 62: 2010-25.
    Cong L, Mo L, Yan G, Ma W, Wu Y, Liu J, et al. 2018. Assessing the spatiotemporal characteristics of dry deposition flux in forests and wetlands. Environmental technology.
    Cullen KA, Ambrose BK, Gentzke AS, Apelberg BJ, Jamal A, King BA. 2018. Notes from the field: use of electronic cigarettes and any tobacco product among middle and high school students—United States, 2011–2018. Morbidity and Mortality Weekly Report 67: 1276.
    Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. 2017. Air pollution and mortality in the Medicare population. New England Journal of Medicine 376: 2513-22.
    Duan J, Tan J, Wang S, Hao J, Chai F. 2012. Size distributions and sources of elements in particulate matter at curbside, urban and rural sites in Beijing. Journal of Environmental Sciences 24: 87-94.
    Elten M, Donelle J, Lima I, Burnett RT, Weichenthal S, Stieb DM, et al. 2020. Ambient air pollution and incidence of early-onset paediatric type 1 diabetes: A retrospective population-based cohort study. Environmental Research 184: 109291.
    Espinosa AJF, Rodrı́guez MT, de la Rosa FJB, Sánchez JCJ. 2001. Size distribution of metals in urban aerosols in Seville (Spain). Atmospheric Environment 35: 2595-601.
    Fang B, Zeng H, Zhang L, Wang H, Liu J, Hao K, et al. 2021. Toxic metals in outdoor/indoor airborne PM2. 5 in port city of Northern, China: Characteristics, sources, and personal exposure risk assessment. Environmental Pollution 279: 116937.
    Faridi S, Shamsipour M, Krzyzanowski M, Künzli N, Amini H, Azimi F, et al. 2018. Long-term trends and health impact of PM2. 5 and O3 in Tehran, Iran, 2006–2015. Environment international 114: 37-49.
    Feliu A, Fu M, Russo M, Martinez C, Sureda X, López MJ, et al. 2020. Exposure to second-hand tobacco smoke in waterpipe cafés in Barcelona, Spain: An assessment of airborne nicotine and PM2. 5. Environmental Research: 109347.
    Fernandes KS, Santos EOd, Godoi RH, Yamamoto CI, Barbosa CG, Souza RA, et al. 2021. Characterization, Source Apportionment and Health Risk Assessment of PM2. 5 for a Rural Classroom in the Amazon: A Case Study. Journal of the Brazilian Chemical Society 32: 363-75.
    Fomba KW, van Pinxteren D, Müller K, Spindler G, Herrmann H. 2018. Assessment of trace metal levels in size-resolved particulate matter in the area of Leipzig. Atmospheric Environment 176: 60-70.
    Furusjö E, Sternbeck J, Cousins AP. 2007. PM10 source characterization at urban and highway roadside locations. Science of the total environment 387: 206-19.
    Gone J-K, Olmez I, Ames M. 2000. Size distribution and probable sources of trace elements in submicron atmospheric particulate material. Journal of Radioanalytical and Nuclear Chemistry 244: 133-9.
    Hasheminassab S, Daher N, Shafer MM, Schauer JJ, Delfino RJ, Sioutas C. 2014. Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2. 5) in retirement communities of the Los Angeles Basin. Science of the total environment 490: 528-37.
    Hassanvand MS, Naddafi K, Faridi S, Nabizadeh R, Sowlat MH, Momeniha F, et al. 2015. Characterization of PAHs and metals in indoor/outdoor PM10/PM2. 5/PM1 in a retirement home and a school dormitory. Science of the Total Environment 527: 100-10.
    Hayes RB, Lim C, Zhang Y, Cromar K, Shao Y, Reynolds HR, et al. 2020. PM2. 5 air pollution and cause-specific cardiovascular disease mortality. International journal of epidemiology 49: 25-35.
    He C, Morawska L, Gilbert D. 2005. Particle deposition rates in residential houses. Atmospheric Environment 39: 3891-9.
    He C, Morawska L, Hitchins J, Gilbert D. 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmospheric environment 38: 3405-15.
    Heydari G, Taghizdeh F, Fazlzadeh M, Jafari AJ, Asadgol Z, Mehrizi EA, et al. 2019. Levels and health risk assessments of particulate matters (PM 2.5 and PM 10) in indoor/outdoor air of waterpipe cafés in Tehran, Iran. Environmental Science and Pollution Research 26: 7205-15.
    Hinds WC. 1999. Aerosol Technology, 2nd ed.: 165-8.
    Hinds WC. 2012. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd Edition.
    Hong G, Kim BS. 2016. Field measurements of infiltration rate in high rise residential buildings using the constant concentration method. Building and Environment 97: 48-54.
    Hänninen O, Goodman P. 2019. Outdoor Air as a Source of Indoor Pollution. Indoor Air Pollution 48: 35.
    Hänninen OO, Lebret E, Ilacqua V, Katsouyanni K, Künzli N, Srám RJ, et al. 2004. Infiltration of ambient PM2. 5 and levels of indoor generated non-ETS PM2. 5 in residences of four European cities. Atmospheric Environment 38: 6411-23.
    Hsieh C-Y, Jung C-R, Lin C-Y, Hwang B-F. 2021. Combined exposure to heavy metals in PM2. 5 and pediatric asthma. Journal of Allergy and Clinical Immunology 147: 2171-80. e13.
    Hsu C-Y, Chiang H-C, Lin S-L, Chen M-J, Lin T-Y, Chen Y-C. 2016. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541: 1139-50.
    Hsueh HT, Ko TH, Chou WC, Hung WC, Chu H. 2012. Health risk of aerosols and toxic metals from incense and joss paper burning. Environmental chemistry letters 10: 79-87.
    Hu X, Ding Z, Zhang Y, Sun Y, Wu J, Chen Y, et al. 2013. Size distribution and source apportionment of airborne metallic elements in Nanjing, China. Aerosol and Air Quality Research 13: 1796-806.
    Huang K, Yang X, Liang F, Liu F, Li J, Xiao Q, et al. 2019. Long-Term Exposure to Fine Particulate Matter and Hypertension Incidence in China. Hypertension 73: 1195-201.
    Huang Y-L, Chen H-W, Han B-C, Liu C-W, Chuang H-C, Lin L-Y, et al. 2014. Personal exposure to household particulate matter, household activities and heart rate variability among housewives. PloS one 9: e89969.
    Hussein T, Hruška A, Dohányosová P, Džumbová L, Hemerka J, Kulmala M, et al. 2009. Deposition rates on smooth surfaces and coagulation of aerosol particles inside a test chamber. Atmospheric Environment 43: 905-14.
    Hystad PU, Setton EM, Allen RW, Keller PC, Brauer M. 2009. Modeling residential fine particulate matter infiltration for exposure assessment. Journal of exposure science & environmental epidemiology 19: 570-9.
    IARC. 2012. Arsenic, Metals, Fibres, and Dusts.
    Jalaludin B, Khalaj B, Sheppeard V, Morgan G. 2008. Air pollution and ED visits for asthma in Australian children: a case-crossover analysis. International archives of occupational and environmental health 81: 967-74.
    Jenkins P. 1996. Personal exposure to airborne particles and metals: results from the Particle TEAM study in Riverside, California. Journal of Exposure Anahsis and Environmental Epidemiolog 6: 57.
    Jeong C-H, Salehi S, Wu J, North ML, Kim JS, Chow C-W, et al. 2019. Indoor measurements of air pollutants in residential houses in urban and suburban areas: Indoor versus ambient concentrations. Science of The Total Environment 693: 133446.
    Jung J, Park JY, Kim YC, Lee H, Kim E, Kim YS, et al. 2021. Effects of air pollution on mortality of patients with chronic kidney disease: A large observational cohort study. Science of The Total Environment 786: 147471.
    Kalaiarasan G, Balakrishnan RM, Sethunath NA, Manoharan S. 2017. Source Apportionment of PM2.5 Particles: Influence of Outdoor Particles on Indoor Environment of Schools Using Chemical Mass Balance. Aerosol and Air Quality Research 17: 616-25.
    Kao M-C, Lung S-C. 2000. Personal particulate exposures in Buddhist temples. Chinese Journal of Public Health 19: 138-43.
    Kastury F, Ritch S, Rasmussen PE, Juhasz AL. 2020. Influence of household smoking habits on inhalation bioaccessibility of trace elements and light rare earth elements in Canadian house dust. Environmental Pollution: 114132.
    Kearney J, Wallace L, MacNeill M, Héroux M-E, Kindzierski W, Wheeler A. 2014. Residential infiltration of fine and ultrafine particles in Edmonton. Atmospheric Environment 94: 793-805.
    Kearney J, Wallace L, MacNeill M, Xu X, VanRyswyk K, You H, et al. 2011. Residential indoor and outdoor ultrafine particles in Windsor, Ontario. Atmospheric environment 45: 7583-93.
    Khan MF, Latif MT, Saw WH, Amil N, Nadzir MM, Sahani M, et al. 2016. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics 16: 597-617.
    Khandelwal N, Tiwari R, Saini R, Taneja A. 2019. Particulate and trace metal emission from mosquito coil and cigarette burning in environmental chamber. SN Applied Sciences 1: 441.
    Kim H, Kang K, Kim T. 2020a. Effect of Occupant Activity on Indoor Particle Concentrations in Korean Residential Buildings. Sustainability 12: 9201.
    Kim I-S, Yang P-S, Lee J, Yu HT, Kim T-H, Uhm J-S, et al. 2019. Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study. Journal of Cardiology.
    Kim IS, Yang PS, Lee J, Yu HT, Kim TH, Uhm JS, et al. 2020b. Long-term fine particulate matter exposure and cardiovascular mortality in the general population: a nationwide cohort study. J Cardiol 75: 549-58.
    Klaeboe R, Amundsen AH, Fyhri A, Solberg S. 2004. Road traffic noise–the relationship between noise exposure and noise annoyance in Norway. Applied Acoustics 65: 893-912.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. 2001. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology 11: 231-52.
    Kohavi R. 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. Proceedings of the Ijcai 14 Montreal, Canada: 1137-45.
    Kulshrestha A, Massey DD, Masih J, Taneja A. 2013. Source characterization of trace elements in indoor environments at urban, rural and roadside sites in a semi arid region of India. Aerosol and Air Quality Research 14: 1738-51.
    Kuo S-C, Tsai YI, Sopajaree K. 2016. Emission characteristics of carboxylates in PM2. 5 from incense burning with the effect of light on acetate. Atmospheric environment 138: 125-34.
    Lai AM, Carter E, Shan M, Ni K, Clark S, Ezzati M, et al. 2019. Chemical composition and source apportionment of ambient, household, and personal exposures to PM2. 5 in communities using biomass stoves in rural China. Science of The Total Environment 646: 309-19.
    Lai Y, Ridley I, Brimblecombe P. 2020. Blower-door estimates of PM2. 5 deposition rates and penetration factors in an idealized room. Indoor and Built Environment: 1420326X20944427.
    Lee W-C, Wolfson JM, Catalano PJ, Rudnick SN, Koutrakis P. 2014. Size-resolved deposition rates for ultrafine and submicrometer particles in a residential housing unit. Environmental science & technology 48: 10282-90.
    Leech JA, Nelson WC, T BURNETT R, Aaron S, Raizenne ME. 2002. It's about time: a comparison of Canadian and American time–activity patterns. Journal of Exposure Science & Environmental Epidemiology 12: 427-32.
    Lequy E, Siemiatycki J, Leblond S, Meyer C, Zhivin S, Vienneau D, et al. 2019. Long-term exposure to atmospheric metals assessed by mosses and mortality in France. Environment international 129: 145-53.
    Leung DY. 2015. Outdoor-indoor air pollution in urban environment: challenges and opportunity. Frontiers in Environmental Science 2: 69.
    Li L, Lin Y, Xia T, Zhu Y. 2020. Effects of Electronic Cigarettes on Indoor Air Quality and Health. Annual Review of Public Health 41.
    Li N, Liu Z, Li Y, Li N, Chartier R, McWilliams A, et al. 2019. Estimation of PM2. 5 infiltration factors and personal exposure factors in two megacities, China. Building and Environment 149: 297-304.
    Li T-C, Yuan C-S, Huang H-C, Lee C-L, Wu S-P, Tong C. 2017a. Clustered long-range transport routes and potential sources of PM2. 5 and their chemical characteristics around the Taiwan Strait. Atmospheric Environment 148: 152-66.
    Li T, Yan M, Sun Q, Anderson GB. 2018. Mortality risks from a spectrum of causes associated with wide-ranging exposure to fine particulate matter: a case-crossover study in Beijing, China. Environment international 111: 52-9.
    Li Y-C, Shu M, Ho SSH, Wang C, Cao J-J, Wang G-H, et al. 2015. Characteristics of PM2. 5 emitted from different cooking activities in China. Atmospheric Research 166: 83-91.
    Li Y, Chen Z. 2003. A balance-point method for assessing the effect of natural ventilation on indoor particle concentrations. Atmospheric Environment 37: 4277-85.
    Li Z, Wen Q, Zhang R. 2017b. Sources, health effects and control strategies of indoor fine particulate matter (PM2. 5): A review. Science of the Total Environment 586: 610-22.
    Lin C-y, Li D, Lu J-m, Yu Z-b, Zhu Y, Shen P, et al. 2020. Short-term associations between ambient fine particulate matter pollution and hospital visits for chronic obstructive pulmonary disease in Yinzhou District, China. Environmental Science and Pollution Research 27: 21647-53.
    Lin Y, Fang F, Wang F, Xu M. 2015. Pollution distribution and health risk assessment of heavy metals in indoor dust in Anhui rural, China. Environmental monitoring and assessment 187: 1-9.
    Liu S, Jørgensen JT, Ljungman P, Pershagen G, Bellander T, Leander K, et al. 2021. Long-term exposure to low-level air pollution and incidence of asthma: the ELAPSE project. European Respiratory Journal 57.
    Liu W, Zhang J, Hashim JH, Jalaludin J, Hashim Z, Goldstein BD. 2003. Mosquito coil emissions and health implications. Environmental health perspectives 111: 1454-60.
    Liu X, Liu X, Zhang T, Ooka R, Kikumoto H. 2020. Comparison of winter air infiltration and its influences between large-space and normal-space buildings. Building and Environment 184: 107183.
    Lo AK-F, Zhang L, Sievering H. 1999. The effect of humidity and state of water surfaces on deposition of aerosol particles onto a water surface. Atmospheric Environment 33: 4727-37.
    Long CM, Suh HH, Catalano PJ, Koutrakis P. 2001. Using time-and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environmental science & technology 35: 2089-99.
    Ma H-w, Hung M-L, Chen P-C. 2007. A systemic health risk assessment for the chromium cycle in Taiwan. Environment International 33: 206-18.
    MacNeill M, Kearney J, Wallace L, Gibson M, Héroux ME, Kuchta J, et al. 2014. Quantifying the contribution of ambient and indoor‐generated fine particles to indoor air in residential environments. Indoor Air 24: 362-75.
    MacNeill M, Wallace L, Kearney J, Allen R, Van Ryswyk K, Judek S, et al. 2012a. Factors influencing variability in the infiltration of PM2. 5 mass and its components. Atmospheric Environment 61: 518-32.
    MacNeill M, Wallace L, Kearney J, Allen RW, Van Ryswyk K, Judek S, et al. 2012b. Factors influencing variability in the infiltration of PM2.5 mass and its components. Atmospheric Environment 61: 518-32.
    Maesano CN, Caillaud D, Youssouf H, Banerjee S, Prud’Homme J, Audi C, et al. 2019. Indoor exposure to particulate matter and volatile organic compounds in dwellings and workplaces and respiratory health in French farmers. Multidisciplinary respiratory medicine 14: 33.
    Mainka A, Zajusz-Zubek E, Kaczmarek K. 2015. PM2. 5 in urban and rural nursery schools in upper Silesia, Poland: trace elements analysis. International journal of environmental research and public health 12: 7990-8008.
    Majid H, Madl P, Hofmann W, Alam K. 2012. Implementation of charged particles deposition in stochastic lung model and calculation of enhanced deposition. Aerosol Science and Technology 46: 547-54.
    Matawle JL, Pervez S, Shrivastava A, Tiwari S, Pant P, Deb MK, et al. 2017. PM 2.5 pollution from household solid fuel burning practices in central India: 1. Impact on indoor air quality and associated health risks. Environmental geochemistry and health 39: 1045-58.
    Meier R, Schindler C, Eeftens M, Aguilera I, Ducret-Stich RE, Ineichen A, et al. 2015. Modeling indoor air pollution of outdoor origin in homes of SAPALDIA subjects in Switzerland. Environment international 82: 85-91.
    Meng Q, Williams R, Pinto JP. 2012. Determinants of the associations between ambient concentrations and personal exposures to ambient PM2. 5, NO2, and O3 during DEARS. Atmospheric environment 63: 109-16.
    Meng QY, Spector D, Colome S, Turpin B. 2009. Determinants of indoor and personal exposure to PM2. 5 of indoor and outdoor origin during the RIOPA study. Atmospheric Environment 43: 5750-8.
    Meng QY, Turpin BJ, Korn L, Weisel CP, Morandi M, Colome S, et al. 2005. Influence of ambient (outdoor) sources on residential indoor and personal PM2.5 concentrations: Analyses of RIOPA data. Journal of Exposure Science & Environmental Epidemiology 15: 17-28.
    Minguillón M, Querol X, Baltensperger U, Prévôt A. 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Science of the total environment 427: 191-202.
    Molina C, Jones B, Hall IP, Sherman MH. 2021. CHAARM: A model to predict uncertainties in indoor pollutant concentrations, ventilation and infiltration rates, and associated energy demand in Chilean houses. Energy and Buildings 230: 110539.
    Moreno T, Querol X, Alastuey A, Reche C, Cusack M, Amato F, et al. 2011. Variations in time and space of trace metal aerosol concentrations in urban areas and their surroundings. Atmospheric Chemistry and Physics 11: 9415.
    Mosley R, Greenwell D, Sparks L, Guo Z, Tucker W, Fortmann R, et al. 2001. Penetration of ambient fine particles into the indoor environment. Aerosol Science & Technology 34: 127-36.
    MS Z, Pantelic J, Tham KW. 2020. Infiltration of Fine Particles in Urban Daycares. Indoor air.
    Mukherjee A, Agrawal M. 2017. A global perspective of fine particulate matter pollution and its health effects. eds. Reviews of environmental contamination and toxicology. Springer, 5-51.
    Mutahi AW, Borgese L, Marchesi C, Gatari MJ, Depero LE. 2021. Indoor and Outdoor Air Quality for Sustainable Life: A Case Study of Rural and Urban Settlements in Poor Neighbourhoods in Kenya. Sustainability 13: 2417.
    Niu Y, Wang F, Liu S, Zhang W. 2021. Source analysis of heavy metal elements of PM2. 5 in canteen in a university in winter. Atmospheric Environment 244: 117879.
    Nomura Y, Hopke P, Fitzgerald B, Mesbah B. 1997. Deposition of particles in a chamber as a function of ventilation rate. Aerosol Science and Technology 27: 62-72.
    Öhrström E, Hadzibajramovic E, Holmes M, Svensson H. 2006. Effects of road traffic noise on sleep: Studies on children and adults. Journal of environmental psychology 26: 116-26.
    Olson DA, Turlington J, Duvall RM, McDow SR, Stevens CD, Williams R. 2008. Indoor and outdoor concentrations of organic and inorganic molecular markers: Source apportionment of PM2. 5 using low-volume samples. Atmospheric Environment 42: 1742-51.
    Ondráček J, Schwarz J, Ždímal V, Andělová L, Vodička P, Bízek V, et al. 2011. Contribution of the road traffic to air pollution in the Prague city (busy speedway and suburban crossroads). Atmospheric Environment 45: 5090-100.
    Othman M, Latif MT, Yee CZ, Norshariffudin LK, Azhari A, Halim NDA, et al. 2020. PM2. 5 and ozone in office environments and their potential impact on human health. Ecotoxicology and Environmental Safety 194: 110432.
    Park E-j, Kim D-s, Park K. 2008. Monitoring of ambient particles and heavy metals in a residential area of Seoul, Korea. Environmental monitoring and assessment 137: 441-9.
    Patch SC, Ullman MC, Maas RP, Jetter JJ. 2009. A pilot simulation study of arsenic tracked from CCA-treated decks onto carpets. Science of the total environment 407: 5818-24.
    Pope CA, Ezzati M, Cannon JB, Allen RT, Jerrett M, Burnett RT. 2018. Mortality risk and PM 2.5 air pollution in the USA: an analysis of a national prospective cohort. Air Quality, Atmosphere & Health 11: 245-52.
    Qiu H, Schooling CM, Sun S, Tsang H, Yang Y, Lee RS-Y, et al. 2018. Long-term exposure to fine particulate matter air pollution and type 2 diabetes mellitus in elderly: a cohort study in Hong Kong. Environment international 113: 350-6.
    Raaschou-Nielsen O, Beelen R, Wang M, Hoek G, Andersen ZJ, Hoffmann B, et al. 2016. Particulate matter air pollution components and risk for lung cancer. Environment international 87: 66-73.
    Ran J, Sun S, Han L, Zhao S, Chen D, Guo F, et al. 2020. Fine particulate matter and cause-specific mortality in the Hong Kong elder patients with chronic kidney disease. Chemosphere: 125913.
    Renzi M, Cerza F, Gariazzo C, Agabiti N, Cascini S, Di Domenicantonio R, et al. 2018. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environment international 112: 68-76.
    Rich DQ, Zhang W, Lin S, Squizzato S, Thurston SW, van Wijngaarden E, et al. 2019. Triggering of cardiovascular hospital admissions by source specific fine particle concentrations in urban centers of New York State. Environment international 126: 387-94.
    Riley WJ, McKone TE, Lai AC, Nazaroff WW. 2002. Indoor particulate matter of outdoor origin: importance of size-dependent removal mechanisms. Environmental science & technology 36: 200-7.
    Rim D, Wallace LA, Persily AK. 2013. Indoor ultrafine particles of outdoor origin: importance of window opening area and fan operation condition. Environmental science & technology 47: 1922-9.
    Rivas I, Viana M, Moreno T, Bouso L, Pandolfi M, Alvarez-Pedrerol M, et al. 2015. Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmospheric Environment 106: 129-38.
    Roberts T. 2016. We Spend 90% of Our Time Indoors. Says Who?
    Ruijgrok W, Tieben H, Eisinga P. 1997. The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmospheric Environment 31: 399-415.
    Samara C, Voutsa D. 2005. Size distribution of airborne particulate matter and associated heavy metals in the roadside environment. Chemosphere 59: 1197-206.
    Sarnat JA, Long CM, Koutrakis P, Coull BA, Schwartz J, Suh HH. 2002. Using sulfur as a tracer of outdoor fine particulate matter. Environmental science & technology 36: 5305-14.
    See S, Balasubramanian R. 2006. Risk assessment of exposure to indoor aerosols associated with Chinese cooking. Environmental Research 102: 197-204.
    See S, Balasubramanian R. 2011. Characterization of fine particle emissions from incense burning. Building and Environment 46: 1074-80.
    Shamy M, Alghamdi M, Khoder MI, Mohorjy AM, Alkhatim AA, Alkhalaf AK, et al. 2018. Association between exposure to ambient air particulates and metabolic syndrome components in a Saudi Arabian population. International journal of environmental research and public health 15: 27.
    Shi S, Chen C, Zhao B. 2015. Air infiltration rate distributions of residences in Beijing. Building and Environment 92: 528-37.
    Shi Y, Matsunaga T, Yamaguchi Y, Zhao A, Li Z, Gu X. 2018. Long-term trends and spatial patterns of PM2. 5-induced premature mortality in South and Southeast Asia from 1999 to 2014. Science of the Total Environment 631: 1504-14.
    Song F, Gao Y. 2011. Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmospheric Environment 45: 6714-23.
    Stamp S, Burman E, Shrubsole C, Chatzidiakou L, Mumovic D, Davies M. 2020. Long-term, continuous air quality monitoring in a cross-sectional study of three UK non-domestic buildings. Building and Environment 180: 107071.
    Straif K, Cohen A, Samet J, Cancer IAfRo. 2013. IARC Scientific Publication No. 161: Air Pollution and Cancer. World Health Organization, Geneva.
    Sultan ZM, Pantelic J, Tham KW. 2020. Infiltration of fine particles in urban daycares. Indoor air 30: 955-65.
    Taiwo AM, Beddows DC, Shi Z, Harrison RM. 2014. Mass and number size distributions of particulate matter components: Comparison of an industrial site and an urban background site. Science of the Total Environment 475: 29-38.
    Taylor S. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta 28: 1273-85.
    Thatcher TL, Layton DW. 1995. Deposition, resuspension, and penetration of particles within a residence. Atmospheric Environment 29: 1487-97.
    Tong X, Ho JMW, Li Z, Lui K-H, Kwok TC, Tsoi KK, et al. 2019. Prediction model for air particulate matter levels in the households of elderly individuals in Hong Kong. Science of The Total Environment: 135323.
    Tong X, Ho JMW, Li Z, Lui K-H, Kwok TCY, Tsoi KKF, et al. 2020. Prediction model for air particulate matter levels in the households of elderly individuals in Hong Kong. Science of The Total Environment 717: 135323.
    Tran DT, Alleman LY, Coddeville P, Galloo J-C. 2017. Indoor particle dynamics in schools: Determination of air exchange rate, size-resolved particle deposition rate and penetration factor in real-life conditions. Indoor and Built Environment 26: 1335-50.
    Vardoulakis S, Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, Galea KS, et al. 2020. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. International journal of environmental research and public health 17: 8972.
    Višić B, Kranjc E, Pirker L, Bačnik U, Tavčar G, Škapin S, et al. 2018. Incense powder and particle emission characteristics during and after burning incense in an unventilated room setting. Air Quality, Atmosphere & Health 11: 649-63.
    Volesky KD, Maki A, Scherf C, Watson L, Van Ryswyk K, Fraser B, et al. 2018. The influence of three e-cigarette models on indoor fine and ultrafine particulate matter concentrations under real-world conditions. Environmental pollution 243: 882-9.
    Wahlin P, Berkowicz R, Palmgren F. 2006. Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment 40: 2151-9.
    Wallace L, Williams R. 2005. Use of personal-indoor-outdoor sulfur concentrations to estimate the infiltration factor and outdoor exposure factor for individual homes and persons. Environmental science & technology 39: 1707-14.
    Wang F, Zhou Y, Meng D, Han M, Jia C. 2018. Heavy metal characteristics and health risk assessment of PM2. 5 in three residential homes during winter in Nanjing, China. Building and Environment 143: 339-48.
    Wang J, Pan Y, Tian S, Chen X, Wang L, Wang Y. 2016. Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmospheric Research 168: 191-204.
    Wang X, Bi X, Sheng G, Fu J. 2006. Hospital indoor PM10/PM2. 5 and associated trace elements in Guangzhou, China. Science of the Total Environment 366: 124-35.
    Watson JG, Chow JC, Chen L, Wang X, Diamond Bar C. 2010. Measurement system evaluation for fugitive dust emissions detection and quantification. Prepared by Desert Research Institute, Reno, NV.
    WHO. 2013. World Health Statistics.
    WHO. 2018. Exposure to ambient air pollution from particulate matter for 2016.
    Xu C, Li N, Yang Y, Li Y, Liu Z, Wang Q, et al. 2017. Investigation and modeling of the residential infiltration of fine particulate matter in Beijing, China. Journal of the Air & Waste Management Association 67: 694-701.
    Xu D, Zhang Y, Sun Q, Wang X, Li T. 2021. Long-term PM 2.5 exposure and survival among cardiovascular disease patients in Beijing, China. Environmental Science and Pollution Research: 1-8.
    Yang Y, Liu L, Xu C, Li N, Liu Z, Wang Q, et al. 2018. Source apportionment and influencing factor analysis of residential indoor PM2. 5 in Beijing. International journal of environmental research and public health 15: 686.
    Ye D, Klein M, Mulholland JA, Russell AG, Weber R, Edgerton ES, et al. 2018. Estimating acute cardiovascular effects of ambient PM 2.5 metals. Environmental health perspectives 126: 027007.
    Yu L, Ning K, Wang W, Guo H, Ji J. 2020. Study on the Influence of Air Tightness of the Building Envelope on Indoor Particle Concentration. Sustainability 12: 1708.
    Yu S-H. 2015. Evaluating the feasibility of CO2-derived estimation as an indicator of ventilation rate.
    Yu S, Kang C-M, Liu M, Koutrakis P. 2021. PM2. 5 sources affecting particle radioactivity in Boston, Massachusetts. Atmospheric Environment: 118455.
    Zanobetti A, Schwartz J. 2002. Cardiovascular damage by airborne particles: are diabetics more susceptible? Epidemiology 13: 588-92.
    Zauli-Sajani S, Rovelli S, Trentini A, Bacco D, Marchesi S, Scotto F, et al. 2018. Higher health effects of ambient particles during the warm season: The role of infiltration factors. Science of The Total Environment 627: 67-77.
    Zenissa R, Syafei AD, Surahman U, Sembiring AC, Pradana AW, Ciptaningayu T, et al. 2020. The Effect of Ventilation and Cooking Activities Indoor Fine Particulates in Apartments Towards. Civil And Environmental Engineering Reports 16: 238-48.
    Zhang Y, Cao S, Xu X, Qiu J, Chen M, Wang D, et al. 2016. Metals compositions of indoor PM 2.5, health risk assessment, and birth outcomes in Lanzhou, China. Environmental monitoring and assessment 188: 325.
    Zhao B, Wu J. 2007. Particle deposition in indoor environments: analysis of influencing factors. Journal of hazardous materials 147: 439-48.
    Zhao J, Birmili W, Hussein T, Wehner B, Wiedensohler A. 2020. Particle number emission rates of aerosol sources in 40 German households and their contributions to ultrafine and fine particle exposure. Indoor air.
    Zhao Y, Zhao B. 2020. Reducing human exposure to PM2. 5 generated while cooking typical Chinese cuisine. Building and Environment 168: 106522.
    Zhou X, Cai J, Chen R, Wang C, Zhao A, Yang C, et al. 2018. Estimation of residential fine particulate matter infiltration in Shanghai, China. Environmental pollution 233: 494-500.
    Zhu L, Liu J, Cong L, Ma W, Ma W, Zhang Z. 2016. Spatiotemporal characteristics of particulate matter and dry deposition flux in the Cuihu wetland of Beijing. PloS one 11: e0158616.
    Zwozdziak A, Gini MI, Samek L, Rogula-Kozlowska W, Sowka I, Eleftheriadis K. 2017. Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2. 5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science 103: 38-52.
    林彥旭. 2013. 建立以大氣溫度預測室內溫度變化之統計模式. 成功大學環境醫學研究所學位論文: 1-87.
    陳亭碩. 2017. 菲律賓北部與台灣南部不同大氣汞污染物時空分佈與長程傳輸. 中山大學環境工程研究所學位論文: 1-144.
    劉祖恩. 2007. 中部科學園區附近地區室內、外懸浮微粒及居民尿液中重金屬之分析 In: 環境醫學研究所碩士班. 中國醫藥大學.

    下載圖示 校內:2024-09-10公開
    校外:2024-09-10公開
    QR CODE