簡易檢索 / 詳目顯示

研究生: 翁忠聖
Weng, Chung-Sheng
論文名稱: 衍生性氣膠形成速率與以熱力學模式模擬氣膠系統組成之探討
Measurements of formation rates of the ambient secondary aerosol and aerosol system compositions simulated by thermodynamic model
指導教授: 吳義林
Wu, Yee-Lin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 188
中文關鍵詞: 衍生性氣膠形成速率ISORROPIA II
外文關鍵詞: secondary aerosol, formation rate, ISORROPIA II
相關次數: 點閱:121下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 細懸浮微粒可分為原生性細懸浮微粒與衍生性細懸浮微粒,二次衍生性氣膠主要是由氣相污染物轉化而成,在不同的月份與氣膠系統組成形態下應對形成速率有所影響,因此於不同季節執行採樣並推算出該時段之形成速率,並搭配ADS採樣系統所分析之數據利用ISORROPIA模擬該時段氣膠系統中可能存在之各項物種,探討其中之關聯性。
    本研究在2016年10~11月、2017年2月與2017年4~5月三個時段於台西、朴子、嘉義、善化、台南、橋頭、小港、屏東、潮州九個地點架設手動測站,同時進行PM2.5周界大氣採樣,將採集到樣品做水溶性離子分析與碳成分分析,並在其中朴子、善化與潮州三站架設ADS同心圓管採集系統,採集PM2.5粒狀物與氣態污染物,前者配合逆軌跡模式用以推估衍生性氣膠之形成速率,後者分析之數據將用於ISORROPIA熱力學模式分析氣膠系統組成。
    10月採樣計算出之形成速率中,硫形成速率平均值為4.34%/hr。氮形成速率平均值為1.61%/hr。碳轉化速率為平均值為0.91%/hr;2月採樣計算出之轉化速率中,硫轉化速率平均值為3.50%/hr。氮轉化速率平均值為1.31%/hr。碳轉化速率平均為0.40%/hr。4月採樣計算出之轉化速率中,硫轉化速率平均值為5.72%/hr。氮轉化速平均值為1.09%/hr。碳轉化速率平均為0.75%/hr。結果顯示平均之硫形成速率高於氮形成速率及碳形成速率,其推估原因為篩選時段大部分為夜晚時段,硫形成機制主要為夜晚之液相反應,而氮、碳形成機制主要為日間之光化學氣相反應。
    比較日夜與季節變化,季節變化中衍生性氣膠轉化速率會因不同之氣象因子如相對濕度、溫度與背景污染物如臭氧濃度而有所不同。而在日夜變化中因日夜衍生性氣膠形成機制不同而有不同表現。
    以ISORROPIA II模擬氣膠成分組成中,大多數物種與實測值相關性良好且無顯著差異(無母數檢定),本研究中對ISORROPIA II模擬結果中含水率與pH值對轉化速率做討論,結果發現含水率與氮轉化率有正相關,應與氮的異相反應有關,而硫轉化率與pH值呈負相關,顯示在一定pH值內氣膠pH越低硫轉化速率越大。

    There are two types of atmospheric aerosols: one is the primary aerosol, which is emitted directly, and the other one is secondary aerosol, which is formed by complex chemical reaction in the atmospheric. Different variables will change the formation rate. In this study, we sampling 9 site in Chiayi- Pingtung at three different months (October, February and April.). Analyzing the samples’ chemical composition such as water-soluble ions and carbon composition. And then we used HYSPLIT back trajectory model to find the path of air mass, calculating the formation rate with the spatial interpolation method. In October, the average formation rate of sulfur is 4.34%/hr, and formation rate of nitrogen is 1.61%/hr, and formation rate of carbon is 0.91%/hr. In February, the average formation rate of sulfur is 3.50%/hr, and formation rate of nitrogen is 1.31%/hr, and formation rate of carbon is 0.40%/hr. In April, the average formation rate of sulfur is 5.72%/hr, and formation rate of nitrogen is 1.09%/hr, and formation rate of carbon is 0.75%/hr. This study used the thermodynamic model, ISORROPIA II, to simulate the aerosol system composition. The simulate result shows good relevance with measured value. This study discusses the relationship between formation rate and environmental factors (pH value and aerosol water content). We find that the aerosol water content and formation rate of nitrogen are positive correlation. The pH value and formation rate of sulfur are negative correlation.

    目錄 摘要 i Extended Abstract iii 誌謝 vii 目錄 ix 第1章 前言 1 1.1 研究源起 1 1.2 研究目的 2 1.3 研究架構 3 第2章 文獻回顧 5 2.1 大氣細懸浮微粒 5 2.1.1 大氣懸浮微粒之定義與來源 5 2.1.2 大氣中懸浮微粒之粒徑分佈及來源 8 2.1.3 懸浮微粒化學組成與特性 11 2.2 衍生性氣膠形成機制 15 2.2.1 硫酸鹽 15 2.2.2 硝酸鹽 18 2.2.3 二次衍生性有機碳 21 2.2.4 形成速率文獻整理 27 2.3 熱力學模式原理與應用 30 2.3.1 熱力學模式原理 30 2.3.2 常見熱力學模式與ISORROPIA II 31 2.3.3 ISORROPIA模式應用文獻整理 32 第3章 研究方法 35 3.1 細懸浮微粒手動監測採樣與分析 35 3.1.1 採樣規劃 35 3.1.2 採樣地點 36 3.1.3 採樣與分析方法 44 3.1.4 品保品管作業方法 49 3.2 利用軌跡線推估衍生物質之形成速率 54 3.2.1 資料收集與整理 54 3.2.2 逆軌跡模式模擬 55 3.2.3 氣團逆軌跡建立 56 3.2.4 衍生性氣膠生成量計算 56 3.2.5 衍生性氣膠之形成速率 57 3.3 熱力學模式ISORROPIA模擬氣膠成分組成 60 第4章 結果與討論 61 4.1 10月採樣結果 61 4.1.1 監測期間環境背景 61 4.1.2 水溶性離子與碳成分分析結果 64 4.1.3 ADS採樣系統分析 70 4.2 2月採樣結果 71 4.2.1 採樣期間環境背景 71 4.2.2 水溶性離子與碳成分分析結果 75 4.2.3 ADS採樣系統分析 81 4.3 4月採樣結果 83 4.3.1 採樣期間環境背景 83 4.3.2 水溶性離子與碳成分分析結果 86 4.3.3 ADS採樣系統分析 91 4.4 衍生物形成速率計算 93 4.4.1 上下風處氣態污染物濃度比較 93 4.4.2 鉀鹽鈉鹽校正生成量比較 94 4.4.3 10月採樣衍生物轉化速率計算結果 96 4.4.4 2月採樣衍生物轉化速率計算結果 98 4.4.5 4月採樣衍生物轉化速率計算結果 99 4.4.6 三次採樣轉化速率季節比較結果 102 4.4.7 三次採樣轉化速率四時段比較結果 103 4.4.8 三次採樣轉化速率挑選站別比較 105 4.4.9 三次採樣轉化速率範圍平均比較 112 4.5 ISORROPIA模擬氣膠系統組成 120 4.5.1 ISORROPIA II模擬氣膠成分組成結果 120 4.5.2 ISORROPIA II模擬結果與實測值比較 122 4.5.3 ISORROPIA II模擬結果與轉化速率探討 123 第5章 結論 129 5.1 結論 129 5.2 建議 131 第6章 參考資料 133 附錄一 三次採樣期間風花圖 139 附錄二 三次採樣期間逆軌跡與濃度結合 167

    Agrawal, H., Malloy, Q. G., Welch, W. A., Miller, J. W., Cocker, D. R., 2008, In-use gaseous and particulate matter emissions from a modern ocean going container vessel, Atmospheric Environment, 42 (2008) 5504–5510
    Behera, S. N., & Sharma, M., 2011, Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: an environmental chamber study. Atmospheric environment, 45(24), 4015-4024.
    Bian, Y. X., Zhao, C. S., Ma, N., Chen, J., Xu, W. Y. , 2014, A study of aerosol liquid water content based on hygroscopicity measurements at high relative humidity in the North China Plain. Atmospheric Chemistry and Physics, 14(12), 6417-6426.
    Calvert, J. G., & Stockwell, W. R., 1983, Deviations from the O3-NO-NO2 photo stationary state in tropospheric chemistry, Can. J. Chem., 61, 983–992.
    Cao, G., & Jang, M., 2007, Effects of particle acidity and UV light on secondary organic aerosol formation from oxidation of aromatics in the absence of NOx. Atmospheric Environment, 41(35), 7603-7613.
    Ding X, Wang X M, Gao B, 2012, Tracer‐based estimation of secondary organic carbon in the Pearl River Delta, south China[J]. Journal of Geophysical Research: Atmospheres (1984–2012), 117(D5).
    Evanoski-Cole, A.R, K.A. Gebhart , B.C. Sive , Y. Zhou , S.L. Capps , D.E. Day , A.J. Prenni , M.I. Schurman , A.P. Sullivan , Y. Li, J.L. Hand, B.A. Schichtel , J.L. Collett Jr., 2017, Composition and sources of winter haze in the Bakken oil and gas extraction region. Atmospheric Environment, 156, 77-87.
    Fountoukis, C., A. Nenes., A. Sullivan, R. Weber, T. V. Reken, M. Fischer, E. Mat´ıas, M. Moya, D. Farmer, R. C ,Cohen,2009 , Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006, Atmospheric Chemistry and Physics, 9(6), 2141-2156.
    Gelencsér, A., May, B., Simpson, D, 2007, Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin[J]. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D23).
    Heikes, B. G., & Thompson, A. M., 1983, Effects of heterogeneous processes on NO3, HONO, and HNO3 chemistry in the troposphere, Journal f Geophysical Research, Volume 88, Issue C15,20 December 1983 ,Pages 10883–10895
    Hänel, G. , 1976, The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air. Advances in geophysics, 19, 73-188.
    Jenkin, M. E., & Clemitshaw, K. C, 2000, Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer, Atmospheric Environment, Volume 34, Issue 16, Pages 2499–2527.
    Kasper, A., Aufdenblatten, S., Forss, A., Mohr, M., Burtscher, H., 2007, Particulate Emissions from a Low-Speed Marine Diesel Engine, Aerosol Science and Technology, Volume 41, 2007 - Issue 1
    Kleindienst, T.E, Jaoui M, Lewandowski M., 2007, Estimates of the contributions of biogenic and anthropogenic hydrocarbons to secondary organic aerosol at a southeastern US location[J]. Atmospheric Environment, 41(37): 8288-8300
    Khoder, M. I.,2002, Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere, 49(6), 675-684.
    Lin, Y.C., Cheng, M.T., Ting, W.Y., Yeh, C.R., 2006, Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urbancity of Central Taiwan. Atmospheric Environment 40: 4725-4733.
    Lin, Y. C., & Cheng, M. T., 2007, Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment, 41(9), 1903-1910.
    Lin, J.J, 2002, Characterization of water-soluble ion species in urban ambient particles, Environment International 28 (2002) 55 – 61.
    Li, W., Montassier, N., Hopke, P. K., 1992, A system to measure the hygroscopicity of aerosol particles. Aerosol science and technology, 17(1), 25-35.
    Li Liping, Shi Jinhui, Li Feifei, Yao Xiaohong, Gao Huiwang , 2014,Concentrations of nitric acid, nitrous acid, ammonia gases and partner nitrogen ions in PM2.5 and gas-particle partitioning analysis in Qingdao, Acta Scientiae Circumstantiae,9:004.
    Matsumoto, K. and H. Tanaka, 1996, Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium, Atmospheric Environment, Volume 30, Issue 4, February 1996, Pages 639-648
    Moya, M., Pandis, S. N., & Jacobson, M. Z., 2002, Is the size distribution of urban aerosols determined by thermodynamic equilibrium? : An application to Southern California. Atmospheric Environment, 36(14), 2349-2365.
    Pilinis, C. and Seinfeld, J. H., 1988, Development and evaluation of an Eulerian photochemical gas-aerosol model. Atmospheric Environment (1967), Volume 22, Issue 9, Pages 1985-2001
    Ram, K., Sarin, M.M., 2011, Day-night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: Implications to secondary aerosol formation. Atmospheric Environment, 45, 460-468.
    Ren, X., Harder, H., Martinez, M., Lesher, R.L., Oliger, A., Shirley, T., Adams, J., Simpas, J.B., Brune, W.H., 2003, HOx concentrations and OH reactivity observations in New York city during PMTACS-NY2001.Atmospheric Environment 37: 3627-3637.
    Roberts, P.T., Friedlander, S.K. (1976). Photochemical aerosol formation SO2, 1-heptene, and NOx in ambient air. Science of the Total Environment 10: 573-580.
    Seinfeld, J.H., Pandis, S.N., 1998, Radiative Effects of Atmospheric Aerosols: Visibility and Climate, Atmospheric Chemistry and Physics, Wiley, New York
    Sharma, M., Kishore, S., Tripathi, S. N., Behera, S. N.,2007, Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: a study at Kanpur, India. Journal of Atmospheric Chemistry, 58(1), 1-17.
    Sinha, P., Hobbs, P. V., Yokelson, R. J., Christian, T. J., Kirchstetter, T. W., Bruintjes, R., 2003, Emissions of trace gases and particles from two ships in the southern Atlantic Ocean, Atmospheric Environment, 37(15), 2139-2148.
    Stelson, A.W. and Seinfeld, J.H., 1982, Relative humidity and temperature dependence of the ammonium nitrate association constant. Atmospheric Environment 16: 983-992.
    Stein, A. F., & Lamb, D., 2003, Empirical evidence for the low-and high-NO x photochemical regimes of sulfate and nitrate formation. Atmospheric Environment, 37(26), 3615-3625.
    Schwartz, S.E., Freiberg, J.E. (2007). Mass-transport limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2 in aqueous solutions. Atmospheric Environment 41: S138-S153.
    Utsunomiya, A., Wakamatsu, S., 1996, Temperature and humidity dependence on aerosol composition in the northern Kyushu, Japan. Atmospheric Environment, 30(13), 2379-2386.
    Wang, D., Zhou, B., Fu, Q., Zhao, Q., Zhang, Q., Chen, J.,Li, J., 2016, Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: observations at a rural site in eastern Yangtze River Delta of China. Science of the Total Environment, 571, 1454-1466.
    Yao, X., Ling, T. Y., Fang, M., Chan, C. K., 2006, Comparison of thermodynamic predictions for in situ pH in PM 2.5. Atmospheric Environment, 40(16), 2835-2844.
    陳士傑(2010),「南台灣沿海地區大氣氣膠特徵探討」,國立屏東科技大學環境工程與科學研究所碩士論文。
    吳宗德(2015),「台灣地區大氣中衍生性氣膠之轉化速率推估及探討」,國立成功大學環境工程研究所碩士論文。
    吳義林(2015),「台灣細懸浮微粒(PM2.5)成分與形成速率分析」,環保署專案計畫,EPA-103-FA11-03-A321。
    張景皓(2016),「南部二次衍生性氣膠形成速率與前驅物探討」,國立成功大學環境工程研究所論文。
    張士昱(2002),「易潮解無機氣膠含水特性之研究」,國立中央大學環境工程學研究所博士論文。
    梁喬凱(2004),「二次氣膠與光化學軌跡模式整合之研究」,國立台灣大學環境工程研究所碩士論文。
    陳瑀婕(2012),「不同天氣型態下台中地區逐時氣膠酸度與大氣能見度的特性」,中山醫學大學公共衛生系碩士論文。

    下載圖示 校內:2022-09-01公開
    校外:2022-09-01公開
    QR CODE