| 研究生: |
林楷翔 Lin, Kai-Hsiang |
|---|---|
| 論文名稱: |
生物醫用鈦基材料表面改質之新穎含磷酸聚合物:合成、血液相容性及骨誘導性探討 A novel phosphonic acid-containing polymer for surface modification of titanium-based biomedical materials:synthesis, hemocompatibility and osteoinductivity evaluations |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 鈦金屬 、亞磷酸 、硫代甜菜鹼 、共聚合 、T-BAG 、血液相容性 、骨誘導性 |
| 外文關鍵詞: | Titanium, phosphonic acid, sulfobetaine, copolymerization, T-BAG, hemocompatibility, osteoinductivity |
| 相關次數: | 點閱:111 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在金屬合金類生醫材料的領域中,由於鈦基材料具有相對良好的生物相容性,良好的機械強度及非磁性,以及良好的抗腐蝕性而被廣泛用以取代傳統的不鏽鋼及鈷合金材料。然而在臨床上發現鈦基材料有血液相容性及抗生物聚集(anti-biofouling)能力不佳、植體與原骨整合時間過長等問題而限制其在硬組織取代、骨接合裝置以及心臟瓣膜、血管支架等方面的應用性。
目前常見的鈦金屬表面改質技術有以微加工、研磨、噴砂、拋光及化學蝕刻、陽極處理等方式使其表面產生奈米級粗糙度,表面以物理或化學方式固定具良好血液相容性、抗生物聚集性或骨相容性的分子等等方式,然而現今的改質方式大多針對特定用途而施行,因此並不足以涵蓋其廣泛的應用。由先前學者研究中發現表面固定化技術常使用矽烷基(silane)以及亞磷酸/亞磷酸酯基(phosphonic acid/phosphonate)作為錨定基團(anchoring group)。因傳統使用的矽烷改質層在生物體內穩定性不佳,且不易形成均勻表面而逐漸為亞磷酸/亞磷酸酯所取代;此外因高分子共聚物有可藉由單體所帶不同官能基並經由簡易的聚合反應展現出不同的外顯功能,綜合以上兩點,在本研究中希望發展出一改質平台除能與鈦金屬表面有良好連結性外並具有功能上的可調性以及製作上的便利性,以期能因應鈦基材料的廣泛應用。
先前研究發現受限於亞磷酸/亞磷酸酯吸附於金屬氧化物之機制,如以傳統浸泡方式欲得到一緻密表面吸附層需要較長時間,因此在本研究中將採用Tethering By Aggregation and Growth (T-BAG)之新式塗佈方式以求能在更短時間內得到一均勻且緻密之表面吸附層。
學者研究指出硫代甜菜鹼官能基(-N+(CH3)2(CH2)3SO3-)具有無毒性、在大範圍pH內可保持其雙電性、良好的血液相容性以及抗生物聚集功能,故在本研究中將合成一共聚物同時具有可與鈦金屬錨合之亞磷酸基團以及此一硫代甜菜鹼官能基,並藉由NMR、FTIR、GPC 、TGA對共聚物進行鑑定;再將高分子以T-BAG方式塗佈於鈦金屬表面後以XPS (X-ray photoelectron spectroscopy)、CA (contact angle)、in vitro platelets adhesion以及SBF (simulated body fluid)-soaking探討其改質層穩定性、血液相容性以及潛在的骨誘導能力。
綜合所有實驗分析可知經由本研究提出之共聚系統可成功合成接近單分布(monodisperse)之共聚產物,並且在錨定單體與雙電性單體的進料比例為2:8時可得到具有最佳血液相容性之共聚物;然而在模擬體液浸泡時可能因所用錨定單體結構疏水性影響而抑制改質層對鈣成分之親和力,並使改質表面無法展現預期的骨誘導性。
Because of titanium-based materials having a relatively good biocompatibility, good mechanical and non-magnetic properties, and good corrosion resistance, it has been widely used to replace traditional stainless steel and cobalt alloy in the field of metallic and alloy type of biomaterials. However, owing to the problems associated with poor hemocompatibility and anti-biofouling ability and long bio-integration time after implantation, the application of titanium-based materials have been limited on hard tissue replacement, osteosynthesis devices, heart valves and vascular stents.
There are some commonly used titanium surface modification techniques, for example, micro-machining, grinding, sandblasting, polishing, chemical etching and anodizing for creating nanoscale roughness onto titanium surface; and surface immobilization of specific molecules through physical or chemical way for making surfaces with good hemocompatibility, anti-biofouling capability or osteocompatibility. Nevertheless, these surface modification schemes are mostly limited to specific applications and cannot be applied for the needs of other biomedical application. Hence, to create a versatile surface modification scheme is greatly needed.
From previous scholars' researches, surface immobilization technique commonly utilized a silane or phosphonic acid/phosphonate as the anchoring group. Due to poor stability of silane modified layer in vivo and difficulty in forming an uniform surface, silane was gradually replaced by the phosphonic acid/phosphonate as the anchoring group of choice. In addition, copolymerization between different functional monomers can lead to materials with a wide variety of functions conveniently. Henceforth, creating a monomer with unsaturated functionality and phosphonic acid/phosphonate terminal end for subsequent copolymerization is proposed in this investigation for surface modification of titanium-based metallic biomedical material.
Previous studies have noted that it will cost time to form a dense phosphonic acid/phosphonate containing layer onto titanium metal oxide surface using traditional dipping process. To overcome this drawback, a novel coating process, T-BAG (Tethering By Aggregation and Growth), is proposed with an aim to form a uniform and dense phosphonic acid/phosphonate layer in a shorter period.
Researchers have pointed out polymer with sulfobetaine functionalities is non-toxic, zwitterionic in a wide range of pH, hemocompatible as well as anti-biofouling. To incorporate these unique properties for biomedical application, a copolymer with sulfobetaine functionality and phosphonic acid group, by which a covalent bond can be formed between the titanium and copolymer through the T-BAG process, is synthesized in this investigation and will be characterized with NMR, FTIR, GPC and TGA. After that, the stability of this copolymer layer on titanium as well as its hemocompatibility and osteoinductivity will be characterized through XPS, static contact angle, in vitro platelets adhesion and simulated body fluid-soaking testing.
The copolymerization scheme employed can generate a copolymer with PDI close to 1. In addition, the copolymer with the highest hemocompatility is synthesized under feeding ratio of 2:8 (anchoring monomer to zwitterionic-terminated monomer). Nevertheless, the hydrophobic characteristic associated with the long alkyl chain within the anchoring monomer may inhibit the attachment of calcium ion onto the modified layer, resulting a low osteoinductivity.
1. Liu, X.Y., Chu, P.K., and Ding, C.X., Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science & Engineering R-Reports, 2004. 47(3-4): p. 49-121.
2. Schwartz, J., Avaltroni, M.J., Danahy, M.P., Silverman, B.M., Hanson, E.L., Schwarzbauer, J.E., Midwood, K.S., and Gawalt, E.S., Cell attachment and spreading on metal implant materials. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2003. 23(3): p. 395-400.
3. Anselme, K. and Bigerelle, M., Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomaterialia, 2005. 1(2): p. 211-222.
4. Castner, D.G. and Ratner, B.D., Biomedical surface science: Foundations to frontiers. Surface Science, 2002. 500(1-3): p. 28-60.
5. Baier, R.E., Meyer, A.E., Natiella, J.R., Natiella, R.R., and Carter, J.M., Surface-Properties Determine Bioadhesive Outcomes - Methods and Results. Journal of Biomedical Materials Research, 1984. 18(4): p. 337-355.
6. Cheng, G., Zhang, Z., Chen, S.F., Bryers, J.D., and Jiang, S.Y., Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials, 2007. 28(29): p. 4192-4199.
7. Thurston, T.E., Andrades, P., Phillips, R.A., Ray, P.D., and Grant, J.H., Safety Profile of Wire Osteosynthesis in Craniosynostosis Surgery. Journal of Craniofacial Surgery, 2009. 20(4): p. 1154-1158.
8. Moe, K.S. and Weisman, R.A., Resorbable fixation in facial plastic and head and neck reconstructive surgery: An initial report on polylactic acid implants. Laryngoscope, 2001. 111(10): p. 1697-1701.
9. Klos, K., Sauer, S., Hoffmeier, K., Gras, F., Frober, R., Hofmann, G.O., and Muckley, T., Biomechanical Evaluation of Plate Osteosynthesis of Distal Fibula Fractures with Biodegradable Devices. Foot and Ankle International, 2009. 30(3): p. 243-251.
10. Ye, S.H., Johnson, C.A., Woolley, J.R., Snyder, T.A., Gamble, L.J., and Wagner, W.R., Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. Journal of Biomedical Materials Research Part A, 2009. 91A(1): p. 18-28.
11. Ye, S.H., Johnson, C.A., Woolley, J.R., Oh, H.I., Gamble, L.J., Ishihara, K., and Wagner, W.R., Surface modification of a titanium alloy with a phospholipid polymer prepared by a plasma-induced grafting technique to improve surface thromboresistance. Colloids and Surfaces B-Biointerfaces, 2009. 74(1): p. 96-102.
12. Ye, S.H., Johnson, C.A., Woolley, J.R., Murata, H., Gamble, L.J., Ishihara, K., and Wagner, W.R., Simple surface modification of a titanium alloy with silanated zwitterionic phosphorylcholine or sulfobetaine modifiers to reduce thrombogenicity. Colloids and Surfaces B-Biointerfaces, 2010. 79(2): p. 357-364.
13. Holmlin, R.E., Chen, X.X., Chapman, R.G., Takayama, S., and Whitesides, G.M., Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 2001. 17(9): p. 2841-2850.
14. Viornery, C., Guenther, H.L., Aronsson, B.O., Pechy, P., Descouts, P., and Gratzel, M., Osteoblast culture on polished titanium disks modified with phosphonic acids. Journal of Biomedical Materials Research, 2002. 62(1): p. 149-155.
15. Branemark, P.I., Hansson, B.O., Adell, R., Breine, U., Lindstrom, J., Hallen, O., and Ohman, A., Osseo-Integrated Implants in Treatment of Edentulous Jaw - Experience from a 10-Year Period. Scandinavian Journal of Plastic and Reconstructive Surgery and Hand Surgery, 1977: p. 7-132.
16. Ehrenfest, D.M.D., Coelho, P.G., Kang, B.S., Sul, Y.T., and Albrektsson, T., Classification of osseointegrated implant surfaces: materials, chemistry and topography. Trends in Biotechnology, 2010. 28(4): p. 198-206.
17. Ries, M.W., Kampmann, C., Rupprecht, H.J., Hintereder, G., Hafner, G., and Meyer, J., Nickel release after implantation of the amplatzer occluder. American Heart Journal, 2003. 145(4): p. 737-741.
18. Huang, H.H., Chiu, Y.H., Lee, T.H., Wu, S.C., Yang, H.W., Su, K.H., and Hsu, C.C., Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials, 2003. 24(20): p. 3585-3592.
19. Beuvelot, J., Portet, D., Lecollinet, G., Moreau, M.F., Basle, M.F., Chappard, D., and Libouban, H., In Vitro Kinetic Study of Growth and Mineralization of Osteoblast-like Cells (Saos-2) on Titanium Surface Coated With a RGD Functionalized Bisphosphonate. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 90B(2): p. 873-881.
20. Courtney, J.M., Lamba, N.M.K., Sundaram, S., and Forbes, C.D., Biomaterials for Blood-Contacting Applications. Biomaterials, 1994. 15(10): p. 737-744.
21. Schwartz, Z. and Boyan, B.D., Underlying Mechanisms at the Bone-Biomaterial Interface. Journal of Cellular Biochemistry, 1994. 56(3): p. 340-347.
22. Beutner, R., Michael, J., Schwenzer, B., and Scharnweber, D., Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox. Journal of the Royal Society Interface, 2010. 7: p. S93-S105.
23. de Jonge, L.T., Leeuwenburgh, S.C.G., Wolke, J.G.C., and Jansen, J.A., Organic-inorganic surface modifications for titanium implant surfaces. Pharmaceutical Research, 2008. 25(10): p. 2357-2369.
24. Conforto, E., Aronsson, B.O., Salito, A., Crestou, C., and Caillard, D., Rough surfaces of titanium and titanium alloys for implants and prostheses. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2004. 24(5): p. 611-618.
25. He, F.M., Zhang, F., Yang, G.L., Wang, X.X., and Zhao, S.F., Enhanced initial proliferation and differentiation of MC3T3-E1 cells on HF/HNO3 solution treated nanostructural titanium surface. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology, 2010. 110(4): p. E13-E22.
26. Barbucci, R., Arturoni, E., Panariello, G., and Di Canio, C., A new amido phosphonate derivative of carboxymethylcellulose with an osteogenic activity and which is capable of interacting with any Ti surface. Journal of Biomedical Materials Research Part A, 2010. 95A(1): p. 58-67.
27. Leone, G., Torricelli, P., Giardino, R., and Barbucci, R., New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polymers for Advanced Technologies, 2008. 19(7): p. 824-830.
28. Pasqui, D., Rossi, A., Di Cintio, F., and Barbucci, R., Functionalized titanium oxide surfaces with phosphated carboxymethyl cellulose: Characterization and bonelike cell behavior. Biomacromolecules, 2007. 8(12): p. 3965-3972.
29. Mrksich, M., A surface chemistry approach to studying cell adhesion. Chemical Society Reviews, 2000. 29(4): p. 267-273.
30. Gawalt, E.S., Avaltroni, M.J., Danahy, M.P., Silverman, B.M., Hanson, E.L., Midwood, K.S., Schwarzbauer, J.E., and Schwartz, J., Bonding organics to Ti alloys: Facilitating human osteoblast attachment and spreading on surgical implant materials corrections (vol 19, pg 200, 2003). Langmuir, 2003. 19(17): p. 7147-7147.
31. Xiao, S.J., Textor, M., Spencer, N.D., and Sigrist, H., Covalent attachment of cell-adhesive, (Arg-Gly-Asp)-containing peptides to titanium surfaces. Langmuir, 1998. 14(19): p. 5507-5516.
32. Pegg, E.C., Walker, G.S., Scotchford, C.A., Farrar, D., and Grant, D., Mono-functional aminosilanes as primers for peptide functionalization. Journal of Biomedical Materials Research Part A, 2009. 90A(4): p. 947-958.
33. Adden, N., Gamble, L.J., Castner, D.G., Hoffmann, A., Gross, G., and Menzel, H., Phosphonic acid monolayers for binding of bioactive molecules to titanium surfaces. Langmuir, 2006. 22(19): p. 8197-8204.
34. Rey, C., Calcium phosphate biomaterials and bone mineral. Differences in composition, structures and properties. Biomaterials, 1990. 11: p. 13-5.
35. Baker, K.C., Anderson, M.A., Oehlke, S.A., Astashkina, A.I., Haikio, D.C., Drelich, J., and Donahue, S.W., Growth, characterization and biocompatibility of bone-like calcium phosphate layers biomimetically deposited on metallic substrata. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2006. 26(8): p. 1351-1360.
36. Tanahashi, M. and Matsuda, T., Surface functional group dependence on apatite formation on self-assembled monolayers in a simulated body fluid. Journal of Biomedical Materials Research, 1997. 34(3): p. 305-315.
37. Liu, D.P., Majewski, P., O'Neill, B.K., Ngothai, Y., and Colby, C.B., The optimal SAM surface functional group for producing a biomimetic HA coating on Ti. Journal of Biomedical Materials Research Part A, 2006. 77A(4): p. 763-772.
38. Bolz, A. and Schaldach, M., Artificial-Heart Valves - Improved Blood Compatibility by Pecvd a-Sic-H Coating. Artificial Organs, 1990. 14(4): p. 260-269.
39. Dion, I., Baquey, C., Havlik, P., and Monties, J.R., A New Model to Test Platelet-Adhesion under Dynamic Conditions - Application to the Evaluation of a Titanium Nitride Coating. International Journal of Artificial Organs, 1993. 16(7): p. 545-550.
40. Dion, I., Rouais, F., Trut, L., Baquey, C., Monties, J.R., and Havlik, P., Tin Coating - Surface Characterization and Hemocompatibility. Biomaterials, 1993. 14(3): p. 169-176.
41. Jones, M.I., McColl, I.R., Grant, D.M., Parker, K.G., and Parker, T.L., Protein adsorption and platelet attachment and activation, on TiN, TiC, and DLC coatings on titanium for cardiovascular applications. Journal of Biomedical Materials Research, 2000. 52(2): p. 413-421.
42. Wang, X.H., Zhang, F., Li, C.R., Yu, L.J., Zheng, Z.H., Liu, X.H., Chen, L.Z., Wang, H.M., and Chen, A., In vivo and in vitro investigation of titanium oxide layers coated on LTI-carbon by IBED. Journal of Materials Science, 2001. 36(8): p. 2067-2072.
43. Yuhta, T., Kikuta, Y., Mitamura, Y., Nakagane, K., Murabayashi, S., and Nishimura, I., Blood Compatibility of Sputter-Deposited Alumina Films. Journal of Biomedical Materials Research, 1994. 28(2): p. 217-224.
44. Chen, J.L., Chen, C., Chen, Z.Y., Chen, J.Y., Li, Q.L., and Huang, N., Collagen/heparin coating on titanium surface improves the biocompatibility of titanium applied as a blood-contacting biomaterial. Journal of Biomedical Materials Research Part A, 2010. 95A(2): p. 341-349.
45. Tebbe, D., Thull, R., and Gbureck, U., Influence of spacer length on heparin coupling efficiency and fibrinogen adsorption of modified titanium surfaces. Biomedical Engineering Online, 2007. 6.
46. Huang, N.P., Csucs, G., Emoto, K., Nagasaki, Y., Kataoka, K., Textor, M., and Spencer, N.D., Covalent attachment of novel poly(ethylene glycol)-poly(DL-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir, 2002. 18(1): p. 252-258.
47. Maddikeri, R.R., Tosatti, S., Schuler, M., Chessari, S., Textor, M., Richards, R.G., and Harris, L.G., Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. Journal of Biomedical Materials Research Part A, 2008. 84A(2): p. 425-435.
48. Ye, S.H., Johnson, C.A., Jr., Woolley, J.R., Snyder, T.A., Gamble, L.J., and Wagner, W.R., Covalent surface modification of a titanium alloy with a phosphorylcholine-containing copolymer for reduced thrombogenicity in cardiovascular devices. J Biomed Mater Res A, 2009. 91(1): p. 18-28.
49. Rezania, A., Johnson, R., Lefkow, A.R., and Healy, K.E., Bioactivation of metal oxide surfaces. 1. Surface characterization and cell response. Langmuir, 1999. 15(20): p. 6931-6939.
50. Gawalt, E.S., Avaltroni, M.J., Koch, N., and Schwartz, J., Self-assembly and bonding of alkanephosphonic acids on the native oxide surface of titanium. Langmuir, 2001. 17(19): p. 5736-5738.
51. Marcinko, S. and Fadeev, A.Y., Hydrolytic stability of organic monolayers supported on TiO2 and ZrO2. Langmuir, 2004. 20(6): p. 2270-2273.
52. Silverman, B.M., Wieghaus, K.A., and Schwartz, J., Comparative properties of siloxane vs phosphonate monolayers on a key titanium alloy. Langmuir, 2005. 21(1): p. 225-228.
53. Lu, G., Bernasek, S.L., and Schwartz, J., Oxidation of a polycrystalline titanium surface by oxygen and water. Surface Science, 2000. 458(1-3): p. 80-90.
54. Zoulalian, V., Monge, S., Zurcher, S., Textor, M., Robin, J.J., and Tosatti, S., Functionalization of titanium oxide surfaces by means of poly(alkyl-phosphonates). Journal of Physical Chemistry B, 2006. 110(51): p. 25603-25605.
55. Goldberg, S. and Sposito, G., A Chemical-Model of Phosphate Adsorption by Soils .1. Reference Oxide Minerals. Soil Science Society of America Journal, 1984. 48(4): p. 772-778.
56. Guerrero, G., Mutin, P.H., and Vioux, A., Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chemistry of Materials, 2001. 13(11): p. 4367-4373.
57. Stumm, W., The Inner-Sphere Surface Complex - a Key to Understanding Surface Reactivity. Aquatic Chemistry, 1995. 244: p. 1-32.
58. Muljadi, D., Posner, A.M., and Quirk, J.P., Mechanism of Phosphate Adsorption by Kaolinite Gibbsite and Pseudoboehmite .2. Location of Adsorption Sites. Journal of Soil Science, 1966. 17(2): p. 230-&.
59. Rajan, S.S.S., Adsorption of Divalent Phosphate on Hydrous Aluminum-Oxide. Nature, 1975. 253(5491): p. 434-436.
60. Firkin, B.G., Decrespigny, P.J.C., Clarke, B.E., Wiley, J., Doyle, A.E., and Schreiber, G., A 75 Year Old Man with Sideroblastic Anemia. Australian and New Zealand Journal of Medicine, 1986. 16(2): p. 249-255.
61. Durmaz, F., A Modular Approach to Functional Self-Assembled Monolayers. 2006.
62. Hanson, E.L., Schwartz, J., Nickel, B., Koch, N., and Danisman, M.F., Bonding self-assembled, compact organophosphonate monolayers to the native oxide surface of silicon. Journal of the American Chemical Society, 2003. 125(51): p. 16074-16080.
63. Bain, C.D., Troughton, E.B., Tao, Y.T., Evall, J., Whitesides, G.M., and Nuzzo, R.G., Formation of Monolayer Films by the Spontaneous Assembly of Organic Thiols from Solution onto Gold. Journal of the American Chemical Society, 1989. 111(1): p. 321-335.
64. Bhattacharya, A.K. and Thyagarajan, G., The Michaelis-Arbuzov Rearrangement. Chemical Reviews, 1981. 81(4): p. 415-430.
65. Mckenna, C.E., Higa, M.T., Cheung, N.H., and Mckenna, M.C., Facile Dealkylation of Phosphonic Acid Dialkyl Esters by Bromotrimethylsilane. Tetrahedron Letters, 1977(2): p. 155-158.
66. Rao, S.P., Ponratnam, S., Kapur, S.L., and Iyer, P.K., Kelen-Tudos Method Applied to Analysis of High-Conversion Copolymerization Data. Journal of Polymer Science Part C-Polymer Letters, 1976. 14(9): p. 513-516.
67. Kokubo, T. and Takadama, H., How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006. 27(15): p. 2907-2915.
68. Yang, Y.F., Li, Y., Li, Q.L., Wan, L.S., and Xu, Z.K., Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. Journal of Membrane Science, 2010. 362(1-2): p. 255-264.
69. L. Daasch, D.S., Infrared Spectra o f Phosphorus Compounds. Anal. Chem., 1951. 23(6): p. 853-868.
70. Li, S.W., Zhou, Z., Abernathy, H., Liu, M.L., Li, W., Ukai, J., Hase, K., and Nakanishi, M., Synthesis and properties of phosphonic acid-grafted hybrid inorganic-organic polymer membranes. Journal of Materials Chemistry, 2006. 16(9): p. 858-864.
71. Zoulalian, V., Zurcher, S., Tosatti, S., Textor, M., Monge, S., and Robin, J.J., Self-Assembly of Poly(ethylene glycol)-Poly(alkyl phosphonate) Terpolymers on Titanium Oxide Surfaces: Synthesis, Interface Characterization, Investigation of Nonfouling Properties, and Long-Term Stability. Langmuir, 2010. 26(1): p. 74-82.
72. Gawalt, E.S., Lu, G., Bernasek, S.L., and Schwartz, J., Enhanced bonding of alkanephosphonic acids to oxidized titanium using surface-bound alkoxyzirconium complex interfaces. Langmuir, 1999. 15(26): p. 8929-8933.
73. Textor, M., Ruiz, L., Hofer, R., Rossi, A., Feldman, K., Hahner, G., and Spencer, N.D., Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir, 2000. 16(7): p. 3257-3271.
74. Holm, R. and Storp, S., Surface Analysis of Ni-A1 Alloys by X-Ray Photoelectron-Spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1976. 8(2): p. 139-147.
75. Jones, C. and Sammann, E., The Effect of Low-Power Plasmas on Carbon-Fiber Surfaces. Carbon, 1990. 28(4): p. 509-514.
76. Bertoncello, R., Casagrande, A., Casarin, M., Glisenti, A., Lanzoni, E., Mirenghi, L., and Tondello, E., Tin, Tic and Ti(C,N) Film Characterization and Its Relationship to Tribological Behavior. Surface and Interface Analysis, 1992. 18(7): p. 525-531.
77. Jouan, P.Y., Peignon, M.C., Cardinaud, C., and Lemperiere, G., Characterization of Tin Coatings and of the Tin/Si Interface by X-Ray Photoelectron-Spectroscopy and Auger-Electron Spectroscopy. Applied Surface Science, 1993. 68(4): p. 595-603.
78. Kuznetsov, M.V., Zhuravlev, J.F., and Gubanov, V.A., XPS Analysis of Adsorption of Oxygen Molecules on the Surface of Ti and Tinx Films in Vacuum. Journal of Electron Spectroscopy and Related Phenomena, 1992. 58(3): p. 169-176.
79. Vanini, A.S., Audouard, J.P., and Marcus, P., The Role of Nitrogen in the Passivity of Austenitic Stainless-Steels. Corrosion Science, 1994. 36(11): p. 1825-1834.
80. Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., and Watanabe, T., Light-induced amphiphilic surfaces. Nature, 1997. 388(6641): p. 431-432.
81. Stevens, N., Priest, C.I., Sedev, R., and Ralston, J., Wettability of photoresponsive titanium dioxide surfaces. Langmuir, 2003. 19(8): p. 3272-3275.
82. Kanta, A., Sedev, R., and Ralston, J., Thermally- and photoinduced changes in the water wettability of low-surface-area silica and titania. Langmuir, 2005. 21(6): p. 2400-2407.
83. Park, J.H. and Aluru, N.R., Temperature-dependent wettability on a titanium dioxide surface. Molecular Simulation, 2009. 35(1-2): p. 31-37.
84. Sim, Y.U., Kim, J.H., Yang, T.Y., Yoon, S.Y., and Park, H.C., Biomimetic whisker-shaped apatite coating of titanium powder. Journal of Materials Science-Materials in Medicine, 2010. 21(5): p. 1489-1494.
85. Bunsiri, R., Thamaphat, K., Limsuwan, P., Synthesis and Characterization of Pure Natural Hydroxyapatite from Fish Bones Bio-Waste. Advanced Materials Research, 2012. 506: p. 206-209.
校內:2017-08-08公開