簡易檢索 / 詳目顯示

研究生: 張富瑄
Chang, Fu-Hsuan
論文名稱: 溫度效應對鎳摻雜的有機半導體薄膜之影響研究
Studies of temperature effect on Ni-doped organic semiconductor thin-films
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 93
中文關鍵詞: 有機磁性半導體五環素薄膜成長溫度磁滯曲線
外文關鍵詞: organic magnetic semiconductor, pentacene thin film, growth temperature, hysteresis curve
相關次數: 點閱:114下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為使用分子束磊晶系統(Molecular Beam Epitaxy, MBE)透過在五環素(pentacene)薄膜中摻雜少量鐵磁性的鎳(Ni)原子,來了解有機磁性半導體的鐵磁特性,並以加熱器改變薄膜成長時的基板溫度,進一步探討成長溫度改變對Ni摻雜的pentacene薄膜造成的影響。由實驗結果,發現有機磁性半導體在室溫(27 ℃)之下可具有鐵磁滯曲線;而一般無機半導體摻雜鐵磁性原子,需在低溫下才具有鐵磁滯曲線,這表示在有機半導體pentacene與鐵磁性原子Ni間有很強的自旋耦合(spin-coupling)量子效應。
    實驗顯示pentacene薄膜的成長與薄膜成長時的基板溫度有關。隨著成長溫度的上升pentacene薄膜之晶相會由薄膜相(thin-film phase)逐漸轉化成塊材相(bulk phase),而在摻雜Ni原子的pentacene薄膜之晶相均維持為薄膜相,推測可能是pentacene的分子排列因Ni的摻雜被鎖住,導致僅在高溫時會有少量的塊材相出現。且在有無摻雜Ni的pentacene薄膜表面之晶粒大小均會隨著成長溫度變高而變大、晶粒與晶粒間的距離也會成長溫度升高而變寬。
    並觀察到Ni摻雜的pentacene薄膜,在經外加水平磁場後表面可觀察到較明顯的磁訊號,且經薄膜表面電位會有變大的現象發生。由偏振拉曼(Raman)光譜得知外加磁場可提高Ni摻雜的pentacene薄膜中pentacene分子與分子間的耦合程度,且隨這薄膜成長溫度越高耦合度越佳。還發現當鐵磁性的pentacene薄膜成長時的基板溫度由50℃上升至75℃時,磁滯曲線的飽和磁矩會變大、殘留磁矩和矯頑力均變小,可能是受到薄膜微結構或pentacene分子的π電子雲與Ni的3d軌域的自旋電子之間的交互作用(exchange interaction)所影響,其詳細物理機制在本文中有深入探討。

    Magnetic organic semiconductor thin films composed of pentacene molecules and a small amount of ferromagnetic Ni atoms were fabricated via molecular beam epitaxy under different deposition temperatures. The organic magnetic semiconductor had a remarkably ferromagnetic hysteresis curve at room temperature, which indicated that there is a strong spin-coupling between pentacene molecules and Ni atoms. The growth of the pentacene film was related to the substrate temperature at which the film was deposited. After the Ni-doped pentacene films were applied the horizontal magnetic field, magnetic signal on the surface of the films were more obvious through the observation of magnetic force microscopy. Through Raman spectroscopy analyses of Ni-doped pentacene films, we observed that the coupling degree between the each pentacene molecule increased with the external magnetic field, and the higher the growth temperature of the film resolved in the better the coupling degree. When the substrate temperature of the ferromagnetic pentacene films increased from 50 °C to 75 °C, the saturation magnetic moment became larger, and the residual magnetic moment and the coercive force became smaller. We thought that it may be affected by the microstructures of the film or the existence of electronic coupling between the π-electron cloud of pentacene molecules and 3d orbital electron of Ni atoms.

    中文摘要 II Extended Abstract IV 致謝 XIII 目錄 XIV 表目錄 XVI 圖目錄 XVII 第一章緒論 1 1.1前言 1 1.2磁性材料發展史 2 1.3 有機磁性材料 3 1.3研究目的 4 第二章 基礎理論 8 2.1 Pentacenc之特性簡介 8 2.2磁性理論 9 2.2.1磁性的來源 9 2.2.2磁性物質的分類 10 2.2.3磁滯曲線 13 2.2.4超順磁效應 14 第三章 實驗儀器介紹及樣品製程 17 3.1實驗儀器介紹 17 3.1.1製程儀器 17 3.1.2分析及量測儀器 20 3.2研究方法 31 3.2.1實驗流程 31 3.2.2樣品製備流程 32 第四章 結果與討論 43 4.1 ESCE分析 43 4.2 AFM分析 44 4.3 XRD分析 46 4.4 MFM分析 49 4.5 SKPM分析 51 4.6 SQUID分析 52 4.7 拉曼光譜分析 55 第五章 結論與未來工作 87 5.1結論 87 5.2未來工作 89 參考文獻 90

    [1] N. Baibich et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices”, Phys. Rev. Lett., 61, 2472, 1988.

    [2] A. V. Khvalkovskiy et al., “Erratum: Basic principles of STT-MRAM cell operation in memory arrays”, J. Phys. D: Appl. Phys., 46, 074001, 2013.

    [3] 吳德和, “磁阻式隨機存取記憶體技術的發展-現在與未來”, 物理雙月刊, 卷26, 2004。
    [4] S. Datta et al., “Electronic analog of the electro‐optic modulator”, Appl. Phys. Lett., 56, 665, 1990.

    [5] R.R. Thankalekshmi et al., “Simulation of a spin field effect transistor based on magnetic impurity–doped ZnO”, J. Appl. Phys, 111, 07D104, 2012.

    [6] Y. Ohno et al., “Electrical spin injection in a ferromagnetic semiconductor heterostructure”, Nature 402, 790, 1999.

    [7] W.F. Koehl et al., “Room temperature coherent control of defect spin qubits in silicon carbide”, Nature 479, 84, 2011.

    [8] H. Ohno, A. Shen et al., “(Ga, Mn) As: A new diluted magnetic semiconductor based on GaAs”, Appl. Phys. Lett., 69, 363, 1996.

    [9] H. Ohno, H. Munekata et al., “Magnetotransport properties of p-type (In, Mn) As diluted magnetic III-V semiconductor”, Phys. Rev. Lett., 68, 2664, 1992.

    [10] J. K. Furdyna, “Diluted magnetic semiconductors”, J. Appl. Phys., 64, 160R29, 1988.

    [11] 胡裕民, “III-V稀磁性半導體薄膜之研究與發展”, 物理雙月刊, 卷26, 2004。

    [12] L. B. Shi et al., “Defect formation and magnetic properties of Co-doped GaN crystal and nanowire”, Physica B, 426, 45, 2013.

    [13] R. P. Davies et al., “Review of recent advances in transition and lanthanide metal–doped GaN and ZnO”, Chem. Eng. Commun., 195, 1030, 2009.

    [14] S. M. Basha et al., “Investigations on cobalt doped GaN for spintronic applications”, J. Cryst. Growth, 218, 432, 2011.

    [15] K. Srinivas et al., “Structural, optical, and magnetic properties of nanocrystalline Co doped SnO2 based diluted magnetic semiconductors”, J. Phys. Chem. C, 113, 3543, 2009.

    [16] M. Cazayous, G. Horowitz, P. Lang, R. P. S. M. Lobo, “Iodine insertion in pentacene thin films investigated by infrared and Raman spectroscopy”, Phys. Rev. B, 70, 081309, 2004.

    [17] B. Bräuer et al., “Electronic and magnetic properties of Ni nanoparticles embedded in various organic semiconductor matrices”, J. Phys. Chem. B, 113, 4565, 2009.

    [18] 何宗曄, “具高介電係數介電層的有機薄膜電晶體與Ni摻雜有機磁性半導體之研究”, 國立成功大學博士論文, 2013。

    [19] 余泊學, “鎳摻雜在塊材相有機半導體中的電子自旋耦合之研究”, 國立成功大學碩士論文, 2013。

    [20] 吳宗璟, “有機磁性半導體薄膜之特性研究”, 國立成功大學碩士論文, 2014。

    [21] C.C. Mattheus et al., “Modeling the polymorphism of pentacene”, J. Am. Chem, Soc., 125, 6523, 2003.

    [22] C.C. Mattheus et al., “Polymorphism in pentacene”, Acta Crystallogr. Sect. C-Cryst. Struct. Commun., 57, 939, 2001.

    [23] L.F. Drummy et al., “Thickness-driven orthorhombic to triclinic phase transformation in pentacene thin films”, Adv. Mater., 17,903, 2005.

    [24] H. L. Cheng et al., “Thickness-Dependent Structural Evolutions and Growth Models in Relation to Carrier Transport Properties in Polycrystalline Pentacene Thin Films”, Adv. Funct. Mater., 17, 3639, 2007.

    [25] 李學養,張煦,“磁性物理學”,聯經出版事業公司印行,台北市,第8頁,1982。

    [26] W.D. Callister et al., “Materials science and engineering”, John Wiley & Sons, Inc, Hoboken, p.800, 2011.

    [27] G. Bertotti et al., “The science of hysteresis”, Academic Press, UK, p.3, 2006.

    [28] G. Bertotti, “Hysteresis in Magnetism”, Academic Press, San Diego, p.3, 1998.

    [29] 廖宇翔, “鎳摻雜五環素電晶體之研究”, 國立成功大學碩士論文, 2016。

    [30] L. E. Alexander,Wiley, New York, p.429 , 1969

    [31] R. Hosemann, A. M. Hindeleh, J. Macromol Sci-Phys. B34, 327 , 1995

    [32] C. C. Mattheus et al., “Modeling the Polymerphism of Pentacene”, J. Am. Chem. Soc., 125, 6323, 2003

    [33] John R. Ferraro et al., “Introductory Raman Spectroscopy”, 2nd edition, Elsevier, p.14-17, 2003.

    [34] A. S. Davydo, “Theory of molecular excition”, McGraw-Hill, New York, 21, 1971

    [35] T. M. K. Nedungadi, “Conical refraction in naphthalene crystal”,Proc. Indian Acad. Sci., 14, 221, 1941

    [36] L. Colangeli et al., “Raman and infrared spectra of polycyclic aromatic hydrocarbon molecules of possible astrophysical interest”, Astrophysical Journal, vol. 396, p. 369-377, 1992.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE