簡易檢索 / 詳目顯示

研究生: 蔡禹擎
Tsai, Yu-Ching
論文名稱: 固態氧化物燃料電池與微型渦輪發電系統整合模擬實驗研究
Experimental Simulation on the Integration of Solid Oxide Fuel Cell and Micro-Turbine Generation System
指導教授: 賴維祥
Lai, Wei-Hsiang
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 82
中文關鍵詞: 甲烷氫氣燃燒室固態氧化物燃料電池渦輪引擎
外文關鍵詞: solid oxide fuel cell, gas turbine, methane, hydrogen, combustor
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   屬於高溫燃料電池類的固態氧化物燃料電池(SOFC),主要優點為其高效率表現與具有高溫廢氣的特性。一般SOFC本體之效率約為45~65%間,若將高溫型的SOFC結合GT進行發電,其發電效率可達70%左右,不過SOFC與GT兩者的操作特性與性能仍有相當差異,其中用來處理SOFC出口處高溫殘餘燃料的尾氣續燃器(Sequential Burner, SeqB),便是兩者整合的關鍵之一。
      本論文透過自行設計之GT測試平台,以一傳統燃燒室來模擬近似於SOFC出口的高溫氣流條件,其後則連接另一燃燒室來加入高溫的氫氣,以模擬SOFC/GT系統中之SeqB。藉由觀察溫度參數與GT的性能變化,來探討水汽添加與氫氣在高溫下的反應狀況。
      實驗結果顯示,水汽的添加對於GT轉速的提升有正面的幫助,不過受限於系統管道配置,此水汽添加量有一個最佳值。在殘餘燃料添加試驗中,經由比較不同預熱程度的氫氣反應狀況,發現預熱溫度在450 ~ 600 ℃之間時;引擎負載設定為90%的狀況時,引擎性能幾乎都有些微的提升。不過在負載設定為100%時,引擎性能則隨著Uf(fuel utilization)上升而下降。而當預熱溫度在650~700℃之間時,則在所測試的負載與Uf條件下,氫氣幾乎有極高的燃燒效率,而對於引擎性能的提升也更加明顯。故預熱溫度乃是影響氫氣在SeqB中燃燒效率的主要因素。因此在SOFC/GT系統中,SOFC若屬於中低溫型(600 ~ 800℃),則在越低溫的條件下,就需有較佳的混合與駐焰機制才能有效的處理殘餘燃料。

      High performance and high temperature exhaust are two major characteristics of solid oxide fuel cell (SOFC). Electric efficiency of SOFC alone is among 45-65% in the state of the art, but it has potential to reach 70% efficiency if combined with gas turbine engine (GT). Among all of the integration problems, a sequential burner (SeqB) which is designed to burn the residual fuel and gain a higher temperature exhaust gas plays an important role to make a connection between SOFC exit and turbine inlet.
      In this thesis, a turbocharger, a water injection system, fuel control systems and two combustors are used to construct a GT system to simulate the situation between SOFC exit and turbine inlet of a real SOFC/GT system. The water injection system is used to simulate the water addition at external reformer. The first combustor (Comb A) is used to create high temperature and similar compositions of SOFC’s exit gas. The second one (Comb B) is connected after the first one, and inject preheated Hydrogen to simulate the condition of SeqB.
      In water addition test, it shows that water addition will increase the GT rotational speed. But due to flow channel capacity, there exists an optimal value. For residual fuel addition test, hydrogen is preheated before injecting into Comb B. The results show that even without flame holding or recirculation mechanism, hydrogen will have good combustion efficiency and preheating temperature is the dominate parameter for hydrogen burning in SeqB. When preheating temperature is among 450-600oC, hydrogen will have almost 100% combustion efficiency at 90% engine loading, and GT will get higher rotational speed for same energy input. But when engine operate at 100% loading, the combustion efficiency will decrease while fuel utilization (Uf) setting is increasing. When raising the preheated temperature to 650-700 oC, the combustion efficiency will increase rapidly. Among all the case discussed, the combustion efficiency is closed to 100%, and GT’s performance increase slightly also observed. Therefore, in SOFC/GT system operation condition, if SOFC is medium temperature type(600-800 oC), there should be some mixing and recirculation mechanism for complete combustion.

    中文摘要 i Abstract iii 誌謝 v 目錄 vi 表目錄 viii 圖目錄 ix 符號說明與名詞簡稱 xii 第一章 緒論 1 1 - 1前言 1 1 - 2文獻回顧 4 1 - 3研究動機 10 1 - 4研究目標 13 第二章 理論分析 15 2 - 1系統模擬概念 15 2 - 2渦輪引擎性能分析 17 2 - 3固態氧化物燃料電池特性分析 23 2 - 4系統模擬方法 27 2 - 5 氫氣的配置 34 第三章 實驗儀器與設備 36 3 - 1實驗設備 36 3 - 1 - 1渦輪增壓器 37 3 - 1 - 2燃燒室 38 3 - 1 - 3流量量測管 45 3 - 1 - 4水霧產生裝置 47 3 - 2實驗儀器 48 3 - 2 - 1燃料控制系統 48 3 - 2 - 2各項感測器 49 3 - 2 - 3資料擷取系統 50 3 - 3實驗方法 51 3 - 3 - 1渦輪引擎基本性能測試 51 3 - 3 - 2殘餘燃料添加測試 52 第四章 實驗結果與討論 54 4 - 1 渦輪引擎基本性能測試 54 4 - 1 - 1 渦輪引擎啟動程序 54 4 - 1 - 2 甲烷燃料試驗 56 4 - 1 - 3 水汽添加試驗 62 4 - 2殘餘燃料加入試驗結果 66 第五章 結論與建議 76 5 - 1 結論 76 5 - 2 建議 77 參考文獻 79

    [1] EG&G Services Parsons, Inc. “Fuel Cell Handbook (Sixth edition),” November 2002, ch.1, ch. 8.
    [2] S.Veyo, “Westinghouse Fuel Cell Combined Cycle Systems,” Westinghouse Science & Technology Center, 1997.
    [3] http://www.siemenswestinghouse.com/en/fuelcells/
    [4] Stephanie Hamilton, “Fuel Cell-MTG Hybrid: The Most Exciting Innovation in Power in the Next 10 Years,” IEEE, May 1999.
    [5] A.B. Stambouli and E. Traversa, “Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy,” Renewable and Sustainable Energy Reviews 6, April 2002, pp.433–455.
    [6] O. Yamamoto, “Solid Oxide Fuel Cell:fundamental aspect and prospect,” Electrochimica Acta 45, 2000, pp. 2423-2435.
    [7] Stefano Campanari, “Full Load and Part-Load Performance Prediction for Integrated SOFC and Microturbine Systems,” Journal of Engineering for Gas Turbine Power, Vol. 122, April 2000.
    [8] J. Palsson, A. Selimovic and L. Sjunnesson, “Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation,” J. Power Source, vol.86, 2000, pp.442-448.
    [9] M. Dokiya, “SOFC System and Technology,” Solid State Ionics, March 2002, pp. 383-392.
    [10] A. F. Massardo and F. Lubelli, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT) :Part A – Cell Model and Cycle Thermodynamic Analysis,” Journal of Engineering for Gas Turbine Power, Vol. 122, January 2000, pp. 27-35.
    [11] A. F. Massardo and L. Magistri, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT) :Part II– Exergy and Thermoeconomic Analysis,” Journal of Engineering for Gas Turbine Power, Vol. 125, January 2003, pp. 67-74.
    [12] M. Pastula, J. Devitt, R. Boersma and D. Ghosh, “Fuel Processing Development at Global Thermoelectric INC,” Solid Oxide Fuel Cells Ⅶ, Vol. 2001-16, February 2001, pp. 180-189.
    [13] 邱耀平、鍾藏棟、陳中生、陳建志,“平板型固態氧化物燃料電池之電化學與熱傳分析”,中華民國第二十七屆全國力學會議,台南,2003年12月。
    [14] F. Hermann, J. Palsson, F. Mauss, “Combustor Design Analysis for SOFC Off-gases,” Fifth European Solid Oxide Fuel Cell Forum, July 2002, pp.961-971.
    [15] 賴維祥、蔡禹擎、陳菁菘、李彥慶等,“甲烷預混燃燒室設計與渦輪系統整合測試研究”,中華民國燃燒學會第十四屆學術研討會,桃園縣,2004年3月。
    [16] K. K. Kuo, “Principles of Combustion,” John Wiley & Sons, Inc., 1986, pp. 329-344.
    [17] I. Wierzba and B. B. Ale, “Effects of Temperature and Time of Explosure on The Flammability Limits of Hydrogen- Air Mixtures,” Int. J. Hydrogen Energy, Vol. 23, No. 12, 1998, pp. 1197-1202.
    [18] J. D. Mattingly, “Elements of Gas Turbine Propulsion,” McGraw-Hill, Inc. 1996.
    [19] W. Lehnert, J. Meusinger and F. Thom, “Modeling of Gas Transport Phenomena in SOFC anodes,” Journal of Power Sources, 2000, pp. 57-63.
    [20] http://www.gasturb.de/index.html
    [21] N. Minh, “SECA Solid Oxide Fuel Cell Program,” presented at Solid State Energy Conversion Alliance 3rd Annual Work Shop Proceedings, March 2001.
    [22] H. Lefebvre, “Gas Turbine Combustion,” 2nd.ed, Hemisphere Pub. Co., 1998, pp. 125-131.
    [23] H. S. Bean, “Fluid Meters – Their Theory and Application 6nd.ed,” The American Society of Mechanical Engineers, April 1983, pp. 197-255.
    [24] F. P. Incropera and D. P. DeWitt., “Fundamentals of Heat and Mass Transfer –4th ed,” John Wiley & Sons, 1996.
    [25] Cardu. M, “Gas Turbine Installation with Total Water Injection in the Combustion Chamber,” Energy Conversion and Management, October, 2001.
    [26] H. Jin and M. Ishida, “A novel gas turbine cycle with hydrogen-fueled chemical-looping combustion,” International Journal of Hydrogen Energy, 2000, pp. 1209-1212.
    [27] 黃玉枝、陳君豪、洪振益,“外部重整固態氧化物燃料電池/小型氣渦輪機複合系統之熱力學分析,” 第二十屆機械工程研討會論文集,台北,2003年12月。
    [28] S. E. Veyo, L. A. Shockling, J. T. Dederer, J. E. Gillett and W. L. Lundberg, “Tubular Solid Oxide Fuel Cell/Gas Turbine Hybrid Cycle Power Systems: Status” Journal of Engineering for Gas Turbine Power, Vol. 124, October 2002.
    [29] P. Costamanga, L. Magistri and A. F. Massardo, “Design and Part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine,” Journal of Power Sources, November 2000.
    [30] C. Rodgers and C. F. McDonald, “The Ubiquitous Personal Turbine - A Power Vision for the 21st Century,” Journal of Engineering for Gas Turbine Power, Vol. 124, October 2002.
    [31] A. L. Dicks and P. A. Martin, “A Fuel Cell Balance of Plant Test Facility,” Journal of Power Sources, 1998.
    [32] E. Liese, R. Gemmen, F. Jabbari and J. Brouwer, “Technical Development Issues and Dynamic Modeling of Gas Turbine and Fuel Cell Hybrid Systems,” Proceedings of the 1999 Review Conference on Fuel Cell Technology, August 1999.
    [33] A. F. Massardo, C. F. McDonald and T. Korakianitis, “Microturbine/Fuel-Cell Coupling for High-Efficiency Electrical Power Generation,” Journal of Engineering for Gas Turbine Power, Vol. 124, January 2002.
    [34] P. Costamagna, L. Magistri and A. F. Massardo, “Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine,” Journal of Power Sources, 2001.

    下載圖示 校內:2005-07-26公開
    校外:2005-07-26公開
    QR CODE