簡易檢索 / 詳目顯示

研究生: 林宗翰
Lin, Zong-Han
論文名稱: 以溶液凝膠法製備鈦酸鎂鈣電阻式記憶體之研究
Investigation of Sol-Gel Magnesium Calcium Titanate Resistive Random Access Memory
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 81
中文關鍵詞: 電阻式轉換鈦酸鎂鈣複合材料銦離子燈絲
外文關鍵詞: resistive switchingy, magnesium malcium titanate, composite, indium ion, filament
相關次數: 點閱:103下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶液凝膠法製備鈦酸鎂鈣複合材料薄膜做為電阻式記憶體之絕緣層,藉由調整複合比例,阻值比可以調控在10到105之間,而其調變機制是由於不同複合比例會改變金屬與絕緣層之間的蕭特基能障進而改變其高阻態電流,
    此外,本研究進一步利用穿透式電子顯微分析其電阻轉換機制,由結果發現在低電阻態下,鈦酸鎂鈣絕緣層出現氧化銦結晶並連接上、下電極,由此結果配合電性分析推測,其電阻轉換機制可能起因於電場導致銦離子遷移。

    Composite magnesium calcium titanate thin films via sol-gel method as insulator of resistive random access memory were prepared. By adjusting the mixing ratio, the ON/OFF ratio could be tuned in the range of 10 to 105. The Schottky barrier height between metal and insulator was modified with different mixing ratios, and the high resistance state current was altered.
    Understanding switching mechanisms is critical for resistive random access memory (RRAM) applications. This work reports an investigation of Al/Mg0.5Ca0.5TiO3 (MCTO)/ITO RRAM, which exhibits bipolar resistive switching behavior. The filaments that connect Al electrodes with indium tin oxide electrodes across the MCTO layer at a low-resistance state are identified. The filaments composed of In2O3 crystals are observed through energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, nanobeam diffraction, and comparisons of JCPD cards. Finally, a switching mechanism resulting from an electrical field induced by indium ion migration is proposed. Indium ion migration forms/ruptures the conductive filaments and sets/resets the RRAM device.

    摘要 I Abstract II 誌謝 IV Contents VI Figure Captions VIII Table Captions IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 3 1.3 Organization of thesis 5 Chapter 2 Literature Survey 6 2.1 Introduction of non-volatile memory 6 2.2 Emerging non-volatile memory 7 2.2.1 Magnetic RAM (MRAM) 7 2.2.2 Ferroelectric RAM (FeRAM) 8 2.2.3 Phase Change RAM (PCRAM) 9 2.2.4 Resistive Random-Access Memory (RRAM) 10 2.3 Resistive Random-Access Memory (RRAM) 11 2.3.1 Resistive switching phenomena 11 2.3.2 Storage media 12 2.3.3 Carrier conduction mechanism 13 2.3.3.1 Ohmic conduction 14 2.3.3.2 Schottky emission 15 2.3.3.3 Poole-Frenkel emission 16 2.3.3.4 Space-charge-limited conduction 17 2.3.3.5 Tunneling 19 2.3.4 Resistive switching mechanism 21 2.3.4.1 Cation migration 22 2.3.4.2 Anion migration 25 2.3.4.3 Thermochemical reaction 27 Chapter 3 Experiment 29 3.1 Fabrication equipment 29 3.1.1 Sputter 29 3.1.2 Spin coater 29 3.1.3 Vacuum oven 30 3.2 Material analysis equipment 32 3.2.1 X-ray diffraction (XRD) 32 3.2.2 X-ray photoelectron spectroscopy (XPS) 33 3.2.3 Atomic force microscopy (AFM) 34 3.2.4 Scanning electron microscopy (SEM) 35 3.2.5 Transmission electron microscopy (TEM) 36 3.3 Electrical analysis equipment 37 3.3.1 Current-voltage (I-V) measurement 37 3.3.2 Retention characteristics 38 3.3.3 Endurance characteristics 38 3.4 Sol-gel process 38 3.4.1 Experimental materials 39 3.4.2 Solution fabrication 43 3.5 Al/MCTO/ITO RRAM device fabrication 45 3.5.1 Substrate cleaning 45 3.5.2 MCTO storage media deposition 46 3.5.3 Top electrode deposition 46 Chapter 4 Results and Discussion 48 4.1 Material analysis of MCTO films 48 4.1.1 Crystal structure analysis 48 4.1.2 Chemical compositional analysis 48 4.1.3 Thickness and surface morphology 49 4.2 Electrical properties of MCTO-based RRAM devices 53 4.2.1 Resistive switching properties of Al/MCTO/ITO RRAM devices 53 4.2.2 Conduction mechanism analysis 55 4.2.3 Uniformity 57 4.2.4 Data retention 58 4.2.5 Endurance 58 4.3 Resistive switching mechanism analysis 68 4.3.1 TEM observation 68 4.3.2 Resistive switching model 70 Chapter 5 Conclusions and Future Prospects 73 5.1 Conclusions 73 5.2 Future Prospects 74 References 75

    [1] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching memories –nanoionic mechanisms, prospects, and challenges,” Adv. Mater., vol. 21, pp. 2632–2663, Jul. 2009.
    [2] International Technology Roadmap for Semiconductors, 2011 Edition, http://www.itrs.net/Links/2011ITRS/Home2011.htm.
    [3] B. J. Choi, A. C. Torrezan, K. J. Norris, F. Miao, J. P. Strachan, M. X. Zhang, D .A. A. Ohlberg, N. P. Kobayashi, J. J. Yang, and R. S. Williams, “Electrical Performance and Scalability of Pt Dispersed SiO2 Nanometallic Resistance Switch,” Nano Lett., vol. 13, pp. 3213–3217, Jun. 2013.
    [4] A. C. Torrezan, J. P. Strachan, G. Medeiros-Ribeiro, and R. S. Williams, “Sub-nanosecond switching of a tantalum oxide memristor,” Nanotechnology, vol. 22, pp. 485203, Dec. 2011.
    [5] M. J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, “A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures,” Nat. Mater., vol. 10, pp. 625, Aug. 2011.
    [6] B. Govoreanu, G. S. Kar, Y. Y. Chen, V. Paraschiv, S. Kubicek, A. Fantini, I. P. Radu, L. Goux, S. Clima, R. Degraeve, N. Jossart, O. Richard, T. Vandeweyer, K. Seo, P. Hendrickx, G. Pourtois, H. Bender, L. Altimime, D. J. Wouters, J. A. Kittl, and M. Jurczak, “10x10nm2 Hf/HfOx Crossbar Resistive RAM with Excellent Performance, Reliability and Low-Energy Operation,” IEDM Tech. Dig., pp. 729, 2011.
    [7] C. Ho, C. L. Hsu, C. C. Chen, J. T. Liu, C. S. Wu, C. C. Huang, C. Hu, and F. L. Yang, “9nm Half-Pitch Functional Resistive Memory Cell with <1 µA Programming Current Using Thermally Oxidized Sub-Stoichiometric WOx Film, ” IEDM Tech. Dig., pp. 436, 2010.
    [8] Crossbar – RRAM overview, http://www.crossbar-inc.com/assets/resource/image/High-Capacity-High-Performance-Non-Volatile-Memory.jpg.
    [9] H. S. P. Wong, H. Y. Lee, S. Yu, Y. S. Chen, Y. Wu, P. S. Chen, B. Lee, F. T. Chen, and M. J. Tsai, “Metal–oxide RRAM,” Proc. IEEE, vol. 100, no. 6, Jun. 2012.
    [10] L. Liu, S. Zhang, Y. Luo, G. Yuan, J. Liu, J. Yin, and Z. Liu, “Coexistence of unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films,” J. Appl. Phys., vol. 111, pp. 104103, Mar. 2012.
    [11] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, “Reproducible switching effect in thin oxide films for memory applications,” Appl. Phys. Lett., vol. 77, no. 1, pp. 139-141, Jul. 2000.
    [12] Y. C. Chang, R. Y. Xue, and Y. H. Wang, “Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application,” IEEE Trans. Electron Devices, vol. 61, pp. 4090-4097, Dec. 2014.
    [13] J. B. Huang, B. Yang, C. Y. Yu, G. F. Zhang, H. Xue, Z. X. Xiong, G. Viola, R. Donnan, H. X. Yan, and M. J. Reece, “Microwave and terahertz dielectric properties of MgTiO3–CaTiO3 ceramics,” Mater. Lett., vol. 138, pp. 225-227, Jan. 2015.
    [14] A. Chen, “Reconfigurable physical unclonable function based on probabilistic switching of RRAM,” IEEE Electron Device Lett., vol. 51, pp. 615-617, Apr. 2015.
    [15] B. D. Lee, H. R. Lee, K. H. Yoon, and Y. S. Cho, “Microwave dielectric properties of magnesium calcium titanate thin films,” Ceram. Int., vol. 31, pp. 143–167, 2005.
    [16] F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent progress in resistive random access memories: Materials, switching mechanisms, and performance,” Mater. Sci. Eng., vol. 83, pp. 1–59, Sep. 2014.
    [17] Z. B. Yan, and J. M. Liu, “Coexistence of high performance resistance and capacitance memory based on multilayered metal-oxide structures,” Sci. Rep., vol. 3, pp. 2482, Aug. 2013.
    [18] D. Kahng, and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, pp. 1288-1295, July-Aug. 1967.
    [19] J. G. Zhu, “Magnetoresistive Random Access Memory: The Path to Competitiveness and Scalability,” Proc. IEEE, vol. 96, no. 11, pp. 1786-1798, Nov. 2008.
    [20] Y. Fujisaki, “Current Status of Nonvolatile Semiconductor Memory Technology,” Jpn. J. Appl. Phys., vol. 49, pp. 100001, 2010.
    [21] R. Moazzami, “Ferroelectric thin film technology for semiconductor memory,”Semicond. Sci. Technol., vol. 10, pp. 375-390, 1995.
    [22] K. Srinivas, “Influence of nanoparticles in PZT ferroelectric material properties and their applications to memory devices,” J. Nanosci. Nanotechnol., vol. 2, no. 3, pp. 56-62, 2014.
    [23] M. Wuttig, and N. Yamada, “Phase-change materials for rewriteable data storage,” Nat. Mater., vol. 6, pp. 824-832, Nov. 2007.
    [24] Y. J. Song, G. Jeong, I. G. Baek, and J. Choi, “What Lies Ahead for Resistance-Based Memory Technologies?,” IEEE Computer, vol. 46, no. 8, pp. 30-36, Aug. 2013.
    [25] Y. Li, S. Long, Y. Liu, C. Hu, J. Teng, Q. Liu, H. Lv, J. Suñé, and M. Liu, “Conductance Quantization in Resistive Random Access Memory,” Nanoscale Res. Lett., vol. 10, pp. 420, Dec. 2015.
    [26] L. Goux, P. Czarnecki, Y. Y. Chen, L. Pantisano, X. P. Wang, R. Degraeve, B. Govoreanu, M. Jurczak, D. J. Wouters, and L. Altimime, “Evidences of oxygen-mediated resistive-switching mechanism in TiNHfO2Pt cells,” Appl. Phys. Lett., vol. 97, pp. 243509, Dec. 2010.
    [27] S. Y. Wang, D. Y. Lee, T. Y. Huang, J. W. Wu, and T. Y. Tseng, “Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer,” Nanotechnology, vol. 21, pp. 495201, Nov. 2010.
    [28] S. J. Song, J. Y. Seok, J. H. Yoon, K. M. Kim, G. H. Kim, M. H. Lee, and C. S. Hwang, “Real-time Identification of the Evolution of Conducting Nano-filaments in TiO2 Thin Film ReRAM,” Sci. Rep., vol. 3, pp. 3443, Dec. 2013.
    [29] W. C. Chien, Y. R. Chen, Y. C. Chen, A. T. H. Chuang, F. M. Lee, Y. Y. Lin, E. K. Lai, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu, “A forming-free WOx resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability,” IEDM Tech. Dig., pp. 440–443, 2010.
    [30] P. Hu, X. Y. Li, J. Q. Lu, M. Yang, Q. B. Lv, and S. W. Li, “Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films,” Phys. Lett. A, vol. 375, pp. 1898, 2011.
    [31] A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and M. Taguchi, “Non-Volatile Resistive Switching for Advanced Memory Applications,” IEDM Tech. Dig., pp. 746, 2005.
    [32] F. M. Pontes, E. J. H. Lee, E. R. Leite, E. Longo, and J. A. Varela, “High dielectric constant of SrTiO3 thin films prepared by chemical process,” J. Mater. Sci., vol. 35, pp. 4783-4787, 2000.
    [33] A. I. Khan, K. Chatterjee, B. Wang, S. Drapcho, L. You, C. Serrao, S. R. Bakaul, R. Ramesh, and S. Salahuddin, “Negative capacitance in a ferroelectric capacitor”, Nat. Mater., vol. 14, no. 2, pp. 182-186, Feb. 2015.
    [34] T. Y. Chang, Y. W. Cheng, and P. T. Lee, “Electrical characteristics of an organic bistable device using an Al/Alq3Al/Alq3/nanostructured MoO3/Alq3/p+-SiMoO3/Alq3/p+-Si structure,” Appl. Phys. Lett., vol. 96, pp. 043309, 2010.
    [35] Z. Jin, G. Liu, and J. Wang, “Organic nonvolatile resistive memory devices based on thermally deposited Au nanoparticle,” AIP Adv., vol. 3, pp. 052113, 2013.
    [36] M. T. Wang, S. Y. Deng, T. H. Wang, B. Cheng, and J. Y. m. Lee, “The ohmic conduction mechanism in high-dielectric-constant ZrO2 thin films,” J. Electrochem. Soc., vol. 152, pp. G542–G544, 2005.
    [37] P. R. Emtage, and W. Tantraporn, “Schottky emission through thin insulating films,” Phys. Rev. Lett., vol. 8, no. 7, pp. 267–268, Apr. 1962.
    [38] F. C. Chiu, “A Review on Conduction Mechanisms in Dielectric Films,” Adv Mater Sci Eng., 2014.
    [39] J. G. Simmons, “Poole-Frenkel Effect and Schottky Effect in Metal-Insulator-Metal Systems,” Phys. Rev., vol. 155, pp. 657, Mar. 1967.
    [40] E. W. Lim, and R. Ismail, “Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey,” Electronics, vol. 4, pp. 586-613, Sep. 2015.
    [41] A. Sawa, “Resistive switching in transition metal oxides,” Mater. Today, vol. 11, pp. 28-36, 2008.
    [42] I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, “Electrochemical metallization memories-fundamentals, applications, prospects,” Nanotechnology, vol. 22, pp. 254003, Jun. 2011.
    [43] Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of conducting filament growth in nanoscale resistive memories,” Nat. Commun., vol. 3, pp. 732, 2012.
    [44] Y. S. Lin, F. Zeng, S. G. Tang, H. Y. Liu, C. Chen, S. Gao, Y. G. Wang, and F. Pan, “Resistive switching mechanisms relating to oxygen vacancies migration in both interfaces in Ti/HfOx/Pt memory devices,” J. Appl. Phys., vol. 113, pp. 064510, Feb. 2013.
    [45] S. Kim, and Y. K. Choi, “A Comprehensive Study of the Resistive Switching Mechanism in Al/TiOx/TiO2/Al-Structured RRAM,” IEEE Trans. Electron Devices, vol. 56, no. 12, pp. 3049-3054, Dec. 2009.
    [46] A. Prakash, D. Jana, and S. Maikap, “TaOx-based resistive switching memories: prospective and challenges,” Nanoscale Res Lett., vol. 8, no. 1, pp. 418, 2013.
    [47] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, “Atomic structure of conducting nanofilaments in TiO2 resistive switching memory,” Nature Nanotech., vol. 5, pp. 148–153, Feb. 2010.
    [48] P. Calka, E. Martinez, V. Delaye, D. Lafond, G. Audoit, D. Mariolle, N. Chevalier, H. Grampeix, C. Cagli, V. Jousseaume, and C. Guedj, “Chemical and structural properties of conducting nanofilaments in TiN/HfO2-based resistive switching structures,” Nanotechnology, vol. 24, pp. 085706, Mar. 2013.
    [49] J. Y. Chen, C. L. Hsin, C. W. Huang, C. H. Chiu, Y. T. Huang, S. J. Lin, W. W. Wu, and L. J. Chen, “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Lett., vol. 13, pp. 3671-3677, Aug. 2013.
    [50] X-ray diffraction – Bruker D8 Discover, http://fys.kuleuven.be/iks/nvsf/experimental-facilities/x-ray-diffraction-2013-bruker-d8-discover.
    [51] X-RAY Photoelectron Spectroscopy, https://fas.dsi.a-star.edu.sg/equipments/xps_10.aspx.
    [52] J. Goldstein, Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., Michael, and J. R., Scanning Electron Microscopy and X-ray Microanalysis, 3rd ed.: Springer, 2003.
    [53] Transmission electron microscopy, https://en.wikipedia.org/wiki/Transmission_electron_microscopy#/media/File:Scheme_TEM_en.svg.
    [54] M. Netrvalova, V. Vavrunkova, J. Mullerova, and P. Sutta, “OPTICAL PROPERTIES OF RE-CRYSTALLIZED POLYCRYSTALLINE SILICON THIN FILMS FROM a-Si FILMS DEPOSITED BY ELECTRON BEAM EVAPORATION,” J. Electr. Eng.: Elektrotechnicky Cas., vol. 60, no. 5, pp. 279-282, Sep. 2009.
    [55] F. Langea, H. Schmelz, and H. Knijzinger, “An X-ray photoelectron spectroscopy study of oxides of arsenic supported on TiO2,” J. Electron Spectrosc. Relat. Phenom., vol. 57, pp. 307-315, Dec. 1991.
    [56] R. Jerome, P. Teyssie, J. J. Pireaux, and J. J. Verbist, “Surface analysis of polymers end-capped with metal carboxylates using x-ray photoelectron spectroscopy,” Appl. Surf. Sci., vol. 27, pp. 93-105, Oct. 1986.
    [57] F. Werfel, and O. Brummer, “Corundum structure oxides studied by XPS,” Physica Scripta, vol. 28, pp. 92–96, 1983.
    [58] V. I. Nefedov, M. N. Firsov, and I. S. Shaplygin, “Electronic structures of MRhO2, MRh2O4, RhMO4 and Rh2MO6 on the basis of X-ray spectroscopy and ESCA data,” J. Electron Spectrosc. Relat. Phenom., vol. 26, pp. 65-78, 1982.
    [59] C. Davoisne, H. Leroux, M. Frère, J. Gimblot, L. Gengembre, Z. Djouadi, V. Ferreiro1, L. d’Hendecourt, and A. Jones, “Chemical and morphological evolution of a silicate surface under low-energy ion irradiation,” Astron. Astrophys., vol. 482, pp. 541-548, May 2008.
    [60] B. Demri, and D. Muster, “XPS study of some calcium compounds,” J. Mater. Process. Technol., vol. 55, pp. 311-314, Dec. 1995.
    [61] R. Castillo, B. Koch, P. Ruiz, and B. Delmon, “Influence of the Amount of Titania on the Texture and Structure of Titania Supported on Silica,” J. Catal., vol. 161, pp. 524-529, Jul. 1996.
    [62] R. P. Vasquez, “X-ray photoelectron spectroscopy study of Sr and Ba compounds,” J. Electron Spectrosc. Relat. Phenom., vol. 56, pp. 217-240, Jun. 1991.
    [63] A. Chen, “Area and Thickness Scaling of Forming Voltage of Resistive Switching Memories,” IEEE Electron Device Lett., vol. 35, pp. 57-59, Jan. 2014.
    [64] T. M. Tsai, K. C. Chang, T. C. Chang, R. Zhang, T. Wang, C. H. Pan, K. H. Chen, H. M. Chen, M. C. Chen, Y. T. Tseng, P. H. Chen, I. Lo, J. C. Zheng, J. C. Lou, and Simon M. Sze, “Resistive Switching Mechanism of Oxygen-Rich Indium Tin Oxide Resistance Random Access Memory,” IEEE Electron Device Lett., vol. 37, pp. 408-411, Apr. 2016.
    [65] W. Kim, S. I. Park, Z. Zhang, and Simon Wong, “Current Conduction Mechanism of Nitrogen-Doped AlOx RRAM,” IEEE Electron Device Lett., vol. 61, pp. 2158-2163, Jun. 2014.
    [66] K. C. Chang, J. W. Huang, T. C. Chang, T. M. Tsai, K. H. Chen, T. F. Young, J. H. Chen, R. Zhang, J. C Lou, S. Y. Huang, Y. C. Pan, H. C. Huang, Y. E. Syu, D. S. Gan, D. H. Bao, and Simon M. Sze, “Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer,” Nanoscale Res. Lett., vol. 8, pp. 523-527, Dec. 2013.
    [67] J. Y. Son and Y. H. Shin, “Direct observation of conducting filaments on resistive switching of NiO thin films,” Appl. Phys. Lett., vol. 92, p.p. 222106, Jun. 2008.
    [68] E. A. V. Ferri, T. M. Mazzo, V. M. Longo, E. Moraes, P. S. Pizani, M. S. Li, J. W. M. Espinosa, J. A. Varela, and E. Longo, “Very Intense Distinct Blue and Red Photoluminescence Emission in MgTiO3 Thin Films Prepared by the Polymeric Precursor Method: An Experimental and Theoretical Approach,” J. Phys. Chem. C, vol. 116, pp. 15557-15567, Jul. 2012.
    [69] S. Saha, T. P. Sinha, and A. Mookerjee, “First principles study of electronic structure and optical properties of CaTiO3,” Eur. Phys. J. B, vol. 18, pp. 207-214, Nov. 2000.
    [70] S. Lany, A. Zakutayev, T. O. Mason, J. F. Wager, K. R. Poeppelmeier, J. D. Perkins, J. J. Berry, D. S. Ginley, and A. Zunger, “Surface Origin of High Conductivities in Undoped In2O3 Thin Films,” Phys Rev Lett., vol. 108, pp. 016802, Jan. 2012.
    [71] M. Jung, W. Song, J. S. Lee, N. Kim, J. Kim, J. Park, H. Lee, and K. Hirakawa, “Electrical breakdown and nanogap formation of indium oxide core/shell heterostructure nanowires,” Nanotechnology, vol. 19, pp. 495702, Dec. 2008.
    [72] T. L. Tsai, H. Y. Chang, F. S. Jiang, and T. Y. Tseng,“Impact of Post-Oxide Deposition Annealing on Resistive Switching in HfO2-Based Oxide RRAM and Conductive-Bridge RAM Devices,” IEEE Electron Device Lett., vol. 36, pp. 1146-1148, Nov. 2015.

    無法下載圖示 校內:2021-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE