| 研究生: |
陳沛云 Chen, Pei-Yun |
|---|---|
| 論文名稱: |
探討陰道短雙歧桿菌與陰道鞭毛蟲的交互作用 Changes in the phenotype of Trichomonas vaginalis through interaction with vaginal probiotic Bifidobacterium breve |
| 指導教授: |
鄭尉弘
Cheng, Wei-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 陰道鞭毛蟲 、短雙歧桿菌 、交互作用 、脂肪酸代謝 、轉錄體學 、代謝體學 、細胞保護作用 |
| 外文關鍵詞: | Trichomonas vaginalis , Bifidobacterium breve, interaction, fatty acid metabolism, transcriptomics, metabolomics, cytoprotection |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰道鞭毛蟲(Trichomonas vaginalis, T. vaginalis)是一種具有四條鞭毛與一條波動膜的真核生物,是最常見的非病毒性性傳播感染,每年感染人數約為 2.76 億。T. vaginalis 寄生於陰道內,而陰道環境中包含多種細菌,以乳酸桿菌(Lactobacillus)為優勢菌種,次為比菲德氏菌(Bifidobacterium)。先前研究指出,與 T. vaginalis 共感染的病患中,短雙歧桿菌(Bifidobacterium breve)的數量會下降。然而,T. vaginalis 與 B. breve 間的關係仍尚未明朗。因此,我們旨在探討 T. vaginalis 與益生菌 B. breve 之間的交互作用。在共培養 4 小時後,我們觀察到 T. vaginalis 的數量顯著增加,而 B. breve 則相較對照組明顯減少。此外,我們也觀察到 B. breve 圍繞在 T. vaginalis 的表面,顯示雙方之間確實存在實體交互作用。接著,我們利用次世代定序(NGS)技術進行轉錄體分析,以探討 T. vaginalis 與 B. breve 共培養後的基因表現變化。結果顯示,與脂肪酸代謝與DNA 複製相關的基因顯著上調。進一步的代謝體分析也證實,B. breve 改變了 T. vaginalis 中長鏈脂肪酸的含量。此外,我們確認了 T. vaginalis 的致病因子表現,尤其是黏附素蛋白(adhesin)表現有上升的趨勢。接著,我們將經 B. breve 共培養後的 T. vaginalis 移轉至 HeLa 細胞中,並測試其誘導的發炎細胞激素產生情形。結果顯示,B. breve 並未改變 T. vaginalis 所誘導的 IL-6 與 IL-8 的表現。此外,我們也發現,B. breve 的預處理無法顯著減少 HeLa 細胞受到 T. vaginalis 感染後的細胞病變效應,亦即 B. breve 並不會改變 T. vaginalis 與 HeLa 細胞之間的交互作用。綜合而言,我們觀察到 B. breve 能促進 T. vaginalis 的生長並改變其基因表現,特別是在脂肪酸代謝方面。此外,我們的研究結果也暗示,作為益生菌的 B. breve 在 T. vaginalis 感染期間,可能扮演的是社區保護(community-protecting)角色,而非直接的保護宿主角色。然而,此一假說仍有待進一步研究驗證。
Trichomonas vaginalis is a eukaryotic organism with four flagella and one undulating membrane. It is the most common non-viral sexually transmitted infection, with 276 million cases annually. T. vaginalis parasitizes the vagina, where the environment consists of various bacteria, with Lactobacillus as the dominant species, followed by Bifidobacterium. Previous studies have shown that Bifidobacterium breve decreased in patients co-infected with T. vaginalis. However, the relationship between T. vaginalis and B. breve remains poorly understood. Therefore, we aimed to uncover the interaction between T. vaginalis and the probiotic B. breve. After 4 hours of co-culture, the number of T. vaginalis significantly increased, while B. breve decreased compared to the control. Additionally, we observed that B. breve surrounded the surface of T. vaginalis during co-culture, emphasizing the actual interaction of the two characters. Next-generation sequencing (NGS)-based transcriptomics analysis was performed to profile the gene expression changes in T. vaginalis after co-culturing with B. breve. The NGS results showed that genes associated with fatty acid metabolism and DNA replication were significantly upregulated. Based on the metabolomics analysis, we confirmed that B. breve altered the contents of long-chain fatty acids in T. vaginalis. Additionally, we confirmed the expression of virulence factors in T. vaginalis; the adhesin protein showed an upregulated trend. Next, we transferred T. vaginalis, which had been co-cultured with B. breve, to HeLa cells and tested the production of inflammatory cytokines. The results showed that B. breve did not change the levels of T. vaginalis-induced IL-6 and IL-8. Conversely, we found that the pre-treatment of B. breve did not significantly reduce cytopathic effects in HeLa cells subsequently infected with T. vaginalis. We also found that B. breve does not alter the interaction between T. vaginalis and HeLa cells. In conclusion, we observed that B. breve enhanced the growth and altered the gene expression in T. vaginalis, especially fatty acid metabolism. In addition, our findings implied that, as a probiotic, B. breve might play a community-protecting role rather a protective role during T. vaginalis infection, although this hypothesis needs further investigation.
1. Wagenlehner, F.M., et al., Prostatitis and male pelvic pain syndrome: diagnosis and treatment. Dtsch Arztebl Int, 2009. 106(11): p. 175-83.
2. Fichorova, R.N., Impact of T. vaginalis infection on innate immune responses and reproductive outcome. Journal of Reproductive Immunology, 2009. 83(1-2): p. 185-189.
3. Cheon, S.-H., et al., The Dimension of Trichomonas vaginalis as Measured by Scanning Electron Microscopy. The Korean Journal of Parasitology, 2013. 51(2): p. 243-246.
4. Kusdian, G., et al., The actin-based machinery of Trichomonas vaginalis mediates flagellate-amoeboid transition and migration across host tissue. Cell Microbiol, 2013. 15(10): p. 1707-21.
5. Rada, P., et al., The Core Components of Organelle Biogenesis and Membrane Transport in the Hydrogenosomes of Trichomonas vaginalis. PLoS ONE, 2011. 6(9): p. e24428.
6. Nigel Yarlett, J.H.P.H., Hydrogenosomes: One Organelle, Multiple Origins BioScience, 2005. 55(8): p. 657-668.
7. Shete, P., P.K. Ruban, and P. Putta, Chapter 3 - Virulence factors and pathogenesis of Trichomonas vaginalis, in Trichomonas vaginalis, P. Khare and A. Jain, Editors. 2025, Academic Press. p. 39-60.
8. Kucknoor, A.S., V. Mundodi, and J.F. Alderete, The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cell Microbiol, 2007. 9(11): p. 2586-97.
9. Miranda-Ozuna, J.F.T., et al., Glucose-restriction increases Trichomonas vaginalis cellular damage towards HeLa cells and proteolytic activity of cysteine proteinases (CPs), such as TvCP2. Parasitology, 2019. 146(9): p. 1156-1166.
10. Zhang, Z., et al., Trichomonas vaginalis adhesion protein 65 (TvAP65) modulates parasite pathogenicity by interacting with host cell proteins. Acta Tropica, 2023. 246: p. 106996.
11. Zhang, Z., et al., The interaction between adhesion protein 33 (TvAP33) and BNIP3 mediates the adhesion and pathogenicity of Trichomonas vaginalis to host cells. Parasit Vectors, 2023. 16(1): p. 210.
12. Zhang, Z., et al., The molecular characterization and immune protection of adhesion protein 65 (AP65) of Trichomonas vaginalis. Microbial Pathogenesis, 2021. 152: p. 104750.
13. Sommer, U., et al., Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells. J Biol Chem, 2005. 280(25): p. 23853-60.
14. GE, G., The laboratory diagnosis of Trichomonas vaginalis. Can J Infect Dis Med Microbiol, 2005. 16(1): p. 35-8.
15. Hrdy, I., et al., Alternative pathway of metronidazole activation in Trichomonas vaginalis hydrogenosomes. Antimicrob Agents Chemother, 2005. 49(12): p. 5033-6.
16. Cudmore, S.L., et al., Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev, 2004. 17(4): p. 783-93, table of contents.
17. Innate Immunity, in Primer to the Immune Response. 2014. p. 55-83.
18. Hou, K., et al., Microbiota in health and diseases. Signal Transduction and Targeted Therapy, 2022. 7(1).
19. Cocomazzi, G., et al., The Impact of the Female Genital Microbiota on the Outcome of Assisted Reproduction Treatments. Microorganisms, 2023. 11(6): p. 1443.
20. Dong, W., et al., Characteristics of Vaginal Microbiota of Women of Reproductive Age with Infections. Microorganisms, 2024. 12(5).
21. De Seta, F., et al., The Vaginal Community State Types Microbiome-Immune Network as Key Factor for Bacterial Vaginosis and Aerobic Vaginitis. Frontiers in Microbiology, 2019. 10.
22. Freitas, A.C. and J.E. Hill, Quantification, isolation and characterization of Bifidobacterium from the vaginal microbiomes of reproductive aged women. Anaerobe, 2017. 47: p. 145-156.
23. Chiu, S.-F., et al., Vaginal Microbiota of the Sexually Transmitted Infections Caused by Chlamydia trachomatis and Trichomonas vaginalis in Women with Vaginitis in Taiwan. Microorganisms, 2021. 9(9): p. 1864.
24. Freitas, A.C. and J.E. Hill, Bifidobacteria isolated from vaginal and gut microbiomes are indistinguishable by comparative genomics. PLOS ONE, 2018. 13(4): p. e0196290.
25. Vazquez-Gutierrez, P., et al., High Iron-Sequestrating Bifidobacteria Inhibit Enteropathogen Growth and Adhesion to Intestinal Epithelial Cells In vitro. Frontiers in Microbiology, 2016. 7.
26. Huiting Fang, H.L., Yang Chen, Xiaoming Liu, Jianxin Zhao, Paul Ross, Catherine Stanton, Wei Chen, Bo Yang, Bifidobacterium breve CCFM1310 enhances immunity in immunosuppressed mice via modulating immune response and gut microbiota. Food Bioscience, 2024. 59.
27. Plummer, E.L., et al., Lactic acid-containing products for bacterial vaginosis and their impact on the vaginal microbiota: A systematic review. PLOS ONE, 2021. 16(2): p. e0246953.
28. Giordani, B., et al., Vaginal Bifidobacterium breve for preventing urogenital infections: Development of delayed release mucoadhesive oral tablets. Int J Pharm, 2018. 550(1-2): p. 455-462.
29. Molenaar, M.C., M. Singer, and S. Ouburg, The two-sided role of the vaginal microbiome in Chlamydia trachomatis and Mycoplasma genitalium pathogenesis. J Reprod Immunol, 2018. 130: p. 11-17.
30. Li, H., et al., The Interaction Between Microorganisms, Metabolites, and Immune System in the Female Genital Tract Microenvironment. Front Cell Infect Microbiol, 2020. 10: p. 609488.
31. Kalia, N., J. Singh, and M. Kaur, Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob, 2020. 19(1): p. 5.
32. Pradines, B., S. Domenichini, and V. Lievin-Le Moal, Adherent Bacteria and Parasiticidal Secretion Products of Human Cervicovaginal Microbiota-Associated Lactobacillus gasseri Confer Non-Identical Cell Protection against Trichomonas vaginalis-Induced Cell Detachment. Pharmaceuticals (Basel), 2022. 15(11).
33. Artuyants, A., et al., Lactobacillus gasseri and Gardnerella vaginalis produce extracellular vesicles that contribute to the function of the vaginal microbiome and modulate host-Trichomonas vaginalis interactions. Mol Microbiol, 2024. 122(3): p. 357-371.
34. Briaud, P. and R.K. Carroll, Extracellular Vesicle Biogenesis and Functions in Gram-Positive Bacteria. Infect Immun, 2020. 88(12).
35. Liang, L., et al., Commensal bacteria-derived extracellular vesicles suppress ulcerative colitis through regulating the macrophages polarization and remodeling the gut microbiota. Microb Cell Fact, 2022. 21(1): p. 88.
36. Shen, L., et al., Tight Junction Pore and Leak Pathways: A Dynamic Duo. Annual Review of Physiology, 2011. 73(1): p. 283-309.
37. Schulzke, J.D., et al., Perspectives on tight junction research. Ann N Y Acad Sci, 2012. 1257: p. 1-19.
38. Sierra, L.-J., et al., Colonization of the cervicovaginal space with Gardnerella vaginalis leads to local inflammation and cervical remodeling in pregnant mice. PLOS ONE, 2018. 13(1): p. e0191524.
39. Mitchell, C. and J. Marrazzo, Bacterial Vaginosis and the Cervicovaginal Immune Response. American Journal of Reproductive Immunology, 2014. 71(6): p. 555-563.
40. Anton, L., et al., Common Cervicovaginal Microbial Supernatants Alter Cervical Epithelial Function: Mechanisms by Which Lactobacillus crispatus Contributes to Cervical Health. Frontiers in Microbiology, 2018. 9.
41. Hinderfeld AS, P.N., Bär AK, Roberton AM, Simoes-Barbosa A, Cooperative Interactions between Trichomonas vaginalis and Associated Bacteria Enhance Paracellular Permeability of the Cervicovaginal Epithelium by Dysregulating Tight Junctions. Infect Immun, 2019 Apr 23. 87(5): p. e00141-19.
42. Lees AM, K.E., Metabolism of unsaturated fatty acids in protozoa. Biochemistry, 1966. 5(5): p. 1475-81.
43. Ramakrishnan, S., et al., Lipid synthesis in protozoan parasites: a comparison between kinetoplastids and apicomplexans. Prog Lipid Res, 2013. 52(4): p. 488-512.
44. Lee, S.H., J.L. Stephens, and P.T. Englund, A fatty-acid synthesis mechanism specialized for parasitism. Nat Rev Microbiol, 2007. 5(4): p. 287-97.
45. Allary, M. and S.T. Prigge, Fatty Acid Synthesis in Protozoan Parasites, in Encyclopedia of Life Sciences. 2008.
46. Feher, J., ATP Production III, in Quantitative Human Physiology. 2012. p. 191-201.
47. Tardieux I, W.P., Ravesloot J, Boron W, Lunn JA, Heuser JE, Andrews NW., Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell., 1992. 24;71(7): p. 1117-30.
48. Rub, A., et al., Host-lipidome as a potential target of protozoan parasites. Microbes Infect, 2013. 15(10-11): p. 649-60.
49. Beach DH, H.G.J., Singh BN, Lindmark DG., Fatty acid and sterol metabolism of cultured Trichomonas vaginalis and Tritrichomonas foetus. Mol Biochem Parasitol, 1990. 15;38(2): p. 175-90.
50. Diamond, L.S., C.G. Clark, and C.C. Cunnick, YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J Eukaryot Microbiol, 1995. 42(3): p. 277-8.
51. Huang, P.J., et al., ProFun: A web server for functional enrichment analysis of parasitic protozoan genes. J Microbiol Immunol Infect, 2024. 57(3): p. 509-517.
52. Pereira-Neves, A. and M. Benchimol, Phagocytosis by Trichomonas vaginalis: new insights. Biol Cell, 2007. 99(2): p. 87-101.
53. Serra-Cardona, A. and Z. Zhang, Replication-Coupled Nucleosome Assembly in the Passage of Epigenetic Information and Cell Identity. Trends Biochem Sci, 2018. 43(2): p. 136-148.
54. Lai, W.K.M. and B.F. Pugh, Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol, 2017. 18(9): p. 548-562.
55. Fennessy, R.T. and T. Owen-Hughes, Establishment of a promoter-based chromatin architecture on recently replicated DNA can accommodate variable inter-nucleosome spacing. Nucleic Acids Res, 2016. 44(15): p. 7189-203.
56. Andrés P. Sanz-Burgos, C.G., Organization of thecis-Acting Element Required for Wheat Dwarf Geminivirus DNA Replication and Visualization of a Rep Protein–DNA Complex. Virology, 1998. 243(1): p. 119-129.
57. Wessel, S.R., et al., PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein. J Biol Chem, 2013. 288(24): p. 17569-78.
58. Riera, A., et al., From structure to mechanism-understanding initiation of DNA replication. Genes Dev, 2017. 31(11): p. 1073-1088.
59. Baris, Y., et al., Fast and efficient DNA replication with purified human proteins. Nature, 2022. 606(7912): p. 204-210.
60. Nasheuer, H.P., et al., Replication Protein A, the Main Eukaryotic Single-Stranded DNA Binding Protein, a Focal Point in Cellular DNA Metabolism. Int J Mol Sci, 2024. 25(1).
61. De Biasio, A., et al., Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair. Nat Commun, 2015. 6: p. 6439.
62. Mirzaei, R., et al., Microbiota metabolites in the female reproductive system: Focused on the short-chain fatty acids. Heliyon, 2023. 9(3): p. e14562.
63. Fernandes, T., et al., Efficacy of vaginally applied estrogen, testosterone, or polyacrylic acid on vaginal atrophy: a randomized controlled trial. Menopause, 2016. 23(7): p. 792-8.
64. Zhao, T., et al., The role of polysaccharides in immune regulation through gut microbiota: mechanisms and implications. Frontiers in Immunology, 2025. 16.
65. Makki, A., et al., A hybrid TIM complex mediates protein import into hydrogenosomes of Trichomonas vaginalis. BMC Biol, 2024. 22(1): p. 130.
66. Morales-Luna, L., et al., Fused Enzyme Glucose-6-Phosphate Dehydrogenase::6-Phosphogluconolactonase (G6PD::6PGL) as a Potential Drug Target in Giardia lamblia, Trichomonas vaginalis, and Plasmodium falciparum. Microorganisms, 2024. 12(1).
67. Dean, P., et al., Transport proteins of parasitic protists and their role in nutrient salvage. Front Plant Sci, 2014. 5: p. 153.
68. Krishnan, A. and D. Soldati-Favre, Amino Acid Metabolism in Apicomplexan Parasites. Metabolites, 2021. 11(2).
69. Parreira de Aquino, G., et al., Lipid and fatty acid metabolism in trypanosomatids. Microb Cell, 2021. 8(11): p. 262-275.
70. Twu, O., et al., Trichomonas vaginalis Exosomes Deliver Cargo to Host Cells and Mediate Host∶Parasite Interactions. PLoS Pathogens, 2013. 9(7): p. e1003482.
71. Chee, W.J.Y., S.Y. Chew, and L.T.L. Than, Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact, 2020. 19(1): p. 203.
72. Chiu, S.F., et al., Vaginal Microbiota of the Sexually Transmitted Infections Caused by Chlamydia trachomatis and Trichomonas vaginalis in Women with Vaginitis in Taiwan. Microorganisms, 2021. 9(9).
73. Möller, J., et al., Macrophages lift off surface-bound bacteria using a filopodium-lamellipodium hook-and-shovel mechanism. Scientific Reports, 2013. 3(1).
74. Anwar, M., et al., Effects of Taro (Colocasia esculenta) Water-Soluble Non-Starch Polysaccharide, Lactobacillus acidophilus, Bifidobacterium breve, Bifidobacterium infantis, and Their Synbiotic Mixtures on Pro-Inflammatory Cytokine Interleukin-8 Production. Nutrients, 2022. 14(10).
75. Bermudez-Brito, M., et al., Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLoS One, 2013. 8(3): p. e59370.
76. Kaewarsar, E., et al., Effects of Synbiotic Lacticaseibacillus paracasei, Bifidobacterium breve, and Prebiotics on the Growth Stimulation of Beneficial Gut Microbiota. Foods, 2023. 12(20).
77. Munoz-Quezada, S., et al., Competitive inhibition of three novel bacteria isolated from faeces of breast milk-fed infants against selected enteropathogens. Br J Nutr, 2013. 109 Suppl 2: p. S63-9.
78. Bernet, M.F., et al., Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Environ Microbiol, 1993. 59(12): p. 4121-8.
79. Asahara, T., et al., Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun, 2004. 72(4): p. 2240-7.
80. Li, Y., et al., Bifidobacterium breve-derived indole-3-lactic acid ameliorates colitis-associated tumorigenesis by directing the differentiation of immature colonic macrophages. Theranostics, 2024. 14(7): p. 2719-2735.
81. Lamari, F., F. Rossignol, and G.A. Mitchell, Glycerophospholipids: Roles in Cell Trafficking and Associated Inborn Errors. J Inherit Metab Dis, 2025. 48(2): p. e70019.
82. Singer SJ, N.G., The fluid mosaic model of the structure of cell membranes. Science, 1972. 175(4023): p. 720-31.
83. Mishra NN, P.T., Sharma N, Gupta DK, Membrane fluidity and lipid composition of fluconazole resistant and susceptible strains of Candida albicans isolated from diabetic patients. Braz J Microbiol, 2008 Apr. 39(2): p. 219-25.
84. van Zandbergen G, S.W., Laskay T, Apoptosis driven infection. Autoimmunity, 2007. 40(4): p. 349-52.
85. Wanderley, J.L., et al., Apoptotic mimicry: an altruistic behavior in host/Leishmania interplay. Braz J Med Biol Res, 2005. 38(6): p. 807-12.
86. Brochet, M., et al., Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca(2)(+) signals at key decision points in the life cycle of malaria parasites. PLoS Biol, 2014. 12(3): p. e1001806.
87. Carter, K.A., et al., Epidemiologic Evidence on the Role of Lactobacillus iners in Sexually Transmitted Infections and Bacterial Vaginosis: A Series of Systematic Reviews and Meta-Analyses. Sex Transm Dis, 2023. 50(4): p. 224-235.
88. Phukan, N., A.E.S. Brooks, and A. Simoes-Barbosa, A Cell Surface Aggregation-Promoting Factor from Lactobacillus gasseri Contributes to Inhibition of Trichomonas vaginalis Adhesion to Human Vaginal Ectocervical Cells. Infect Immun, 2018. 86(8).
校內:2025-11-30公開