簡易檢索 / 詳目顯示

研究生: 宋威億
Sung, Wei-I
論文名稱: 利用原子力顯微鏡辨識PSGL-1及外鞘膜蛋白之間特定且微小結合力
AFM applied for specific and infinitesimal bonding-force recognition between PSGL-1 and EV71 viral envelope
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 64
中文關鍵詞: EV71VP-1硫化PSGL-1解離力專一性鍵結
外文關鍵詞: EV71, VP-1, sulfated-PSGL-1, unbinding force, specific bonding
相關次數: 點閱:1351下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸道病毒(Enterovirus)又稱為腸病毒,是一種主要生長於腸道的RNA病毒,例如最近幾年在亞洲流行的腸病毒71型(EV71)即為其中一種,感染病徵類似流感症狀,如發燒、喉嚨痛、頭暈噁心等,亦容易在手掌,腳掌及口腔出現紅疹潰瘍與水泡等手足口症(hand-foot-mouth disease,HFMD)的病徵。部分五歲以下感染腸病毒之幼兒可能會併發重症,尤其以EV71最常出現神經系統的病徵如抽蓄、肢體麻痺、腦膜炎及呼吸困難等症狀。儘管EV71於人體內的傳染途徑已廣泛地被研究,但是EV71與受體P-selectin glycoprotein ligand-1(PSGL-1)之間的作用關係仍未被完全理解。
      本研究係以原子力學顯微鏡(Atomic Force Microscopy,AFM)作為分子鍵結之解離力量測工具,以近年常見的腸病毒71型(EV71)作為研究之對象,並將EV71外鞘膜蛋白VP-1利用矽烷偶聯劑 ((3-Aminopropyl)triethoxysilane)與戊二醛(glutaraldehyde) 接枝於AFM之探針上,進一步對利用同樣方法固定於矽基板表面的PSGL-1來進行配體和受體之間解離力之量測及評估。評估部分包含PSGL-1有無經過硫化後修飾的處理、量測位置對於解離力的影響。結果顯示,無論使用何種探針 (Anti-sulfo antibody tip、VP-1 tip)與PSGL-1之解離力數據,分佈情況並不會因為量測點位的改變而使得量測的結果有顯著差異。Anti-sulfo antibody 與VP-1由於對硫化PSGL-1具有的專一性關係,造成分子間的解離力量較未硫化PSGL-1增強1.82倍。此外,同樣與硫化PSGL-1具有專一性鍵結的Anti-sulfo antibody 及VP-1,由於與硫化PSGL-1間的關係不同,如Anti-sulfo antibody 與硫化PSGL-1為抗體與抗原;VP-1與硫化PSGL-1為配體與受體,以及Anti-sulfo antibody 與VP-1在分子量相差6.75倍的情況下,使得兩者雖然同樣存在有專一性關係,解離力量卻出現差異。

    Enteroviruses are a genus of positive-sense single-stranded RNA viruses associated with several human and mammalian diseases, for example, an epidemic of EV71 always occurs in Southeast Asian areas, mainly in summer and early autumn. EV71 is notable as one of the major causative agents for hand, foot and mouth disease (hand-foot-mouth disease, HFMD). It also associated with severe central nervous system diseases like twitch, paralysis, meningitis and difficulty breathing, etc. Despite lots of researches focus on the main route of infection about EV71, the interactions mechanism between EV71 and a functional cellular receptor, P-selectin glycoprotein ligand-1(PSGL-1) remains largely unknown.
    Atomic force microscopy (AFM) was used as force apparatus to measure the unbinding force between the outer sheath protein VP-1 of EV71 and PSGL-1. Through (3-Aminopropyl)triethoxysilane silane (APTES) and glutaraldehyde(GA), proteins were, respectively, covalently attached on the apex of AFM tip and silicon substrate. Then the unbinding forces between the proteins were analyzed. With the tyrosine sulfation of PSGL-1, unbinding force between Anti-sulfo antibody & sulfat-ed-PSGL-1(antigen) and VP-1(ligand) & sulfated-PSGL-1(receptor) obviously stronger than those of nonsulfated-PSGL-1 since the specific bonding between the proteins would affect the unbinding force. Besides, owing to the different roles in physiological reaction and the gap between molecular weight, had much stronger chemical binding to sulfated-PSGL-1 than VP-1, resulting in the binding strength of Anti-sulfo antibody and sulfated-PSGL-1 is thus larger than that between VP-1 and sulfated-PSGL-1.

    摘要 I Abstract II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 3 1.3 文獻回顧 4 1.3.1 蛋白質接枝於矽基板材料表面 4 1.3.2 AFM於蛋白質之相關解離力研究及量測-解離力定義 6 1.3.3 蛋白質與特定官能基之間的專一性 8 1.3.4 PSGL-1於N-端的酪胺酸硫化與腸病毒71型(EV71)的關係 8 1.3.5 利用力學曲線圖判定蛋白質之間鍵結的可能機制 9 1.4 研究目的 10 第二章 理論基礎 11 2.1 AFM技術發展及原理 11 2.1.1 原子力學顯微術原理 11 2.1.2 原子力學顯微術掃描物體機制 12 2.1.3 原子力學顯微術作用力量量測機制 15 2.2 自組裝單分子層接枝理論及基礎 18 第三章 實驗材料與方法 21 3.1 實驗流程 21 3.2 實驗材料與方法 22 3.2.1 蛋白質試片製備方法 22 3.2.1 (a) PSGL-1製備流程 22 3.2.1 (b) EV71外鞘膜蛋白VP-1製備流程 23 3.2.3 蛋白質接枝於修飾過後的探針或矽平面製備方法 23 3.2.4 AFM探針的彈簧常數(Spring constant : kb)之評估 25 3.2.5 AFM之靈敏度正規化 27 3.2.6 AFM之實驗操作及參數設定 27 3.3 實驗設備 28 3.3.1 原子力學顯微鏡(Atomic Force Microscopy,AFM) 28 3.4 分析儀器 30 3.4.1 X光光電子能譜儀 30 第四章 試片製備與表面改質之驗證 32 4.1 驗證自組裝單分子層修飾PSGL-1於矽平面之可行性 32 4.1.1 以免疫染色法確認自組裝單分子層修飾於矽平面之PSGL-1 32 4.1.2以XPS分析自組裝單分子層修飾後的矽平面之化學性質 33 第五章 解離力之量測及分析 38 5.1 蛋白質分子間力學曲線之量測定義 38 5.2 經過硫化後修飾之PSGL-1與Anti-sulfo antibody之間的解離力分析 42 5.3 經過硫化後修飾之PSGL-1與VP-1之間的解離力分析 49 結論 56 參考文獻 58

    [1] Thoumine, P. Kocian, A. Kottelat and J. J. Meister, “Short-term binding of fi-broblast to fibronectin: optical tweezers experiments and probabilistic analysis”, European Respiratory Journal, Vol. 29(6), 398-408, 2000.
    [2] V. Heinrich, A. Leung and E. Evans, “Nano- to microscale dynamics of P-selectin detachment from leukocyte interfaces. II. Tether flow terminated by P-selectin dissociation from PSGL-1”, Biophys, J 88 (3): 2299-308, 2005.
    [3] C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula and H. X. Fu, “Experimental tech-niques for single cell and single molecule biomechanics”, Materials Science and Engineering C, Vol. 26, 1278-1288, 2006.
    [4] J. W. Weisel, H. Shuman and R. I. Litvinov, “Protein-protein unbinding induced by force: single-molecule studies”, Current Opinion in Structural Biology, Vol. 13, 227-235, 2003.
    [5] Y. Nishimura, M. Shimojima, Y. Tano, T. Miyamura, T. Wakita and H. Shimizu1, “Human P-selectin glycoprotein ligand-1 is a functional receptor for enterovirus 71”, Nature Medicine, Vol. 15(7), 794-798, 2009.
    [6] M. Shimojima, T. Miyazawa, Y. Sakurai, Y. Nishimura, Y. Tohya, Y. Matsuura and H. Akashi, “Usage of myeloma and panning in retrovirus-mediated expres-sion cloning”, Analytical Biochemistry, Vol. 315, 138–140 , 2003.
    [7] Z. Laszik, P. J. Jansen, R. D. Cummings, T. F. Tedder, R. P. McEver and K. L. Moore, “P-selectin glycoprotein ligand-1 is broadly expressed in cells of myeloid, lymphoid, and dendritic lineage and in some nonhematopoietic cells”, Blood, Vol. 88, 3010–3021, 1996.
    [8] D. Sako, X. Chang, K. M. Barone, G. Vachino, H. M. White, G. Shaw, G. M. Veldman, K. M. Bean, T. J. Ahern, B. Furie, D. A. Cumming and G. R. Larsen, “Expression cloning of a functional glycoprotein ligand for P-selectin”, Cell, Vol. 75, 1179–1186, 1993.
    [9] W. S. Somers, J. Tang, G. D. Shaw and R. T. Camphausen, “Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLeX and PSGL-1”, Cell, Vol. 103, 467–479, 2000.
    [10] W. Zhang, A. G. Stack and Y. S. Chen, “Interaction force measurement between E. coli cells and nanoparticles immobilized surfaces by using AFM”, Colloids and Surfaces B: Biointerfaces, Vol. 82, 316–324, 2011
    [11] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
    [12] M. Paajanen, J. Katainen, O. H. Pakarinen, A. S. Foster and J. Lahtinen, “Ex-perimental humidity dependency of small particle adhesion on silica and titania”, Journal of Colloid and Interface Science, Vol. 304, 518–523, 2006.
    [13] M. Tanaka, M. Komagata, M. Tsukada and H. Kamiya, ”Evaluation of the parti-cle–particle interactions in a toner by colloid probe AFM”, Powder Technology, Vol. 183, 273–281, 2008.
    [14] R. Jonesa, H. M. Pollocka, D. Geldartb and A. Verlinden, “Inter-particle forces in cohesive powders studied by AFM: effects of relative humidity, particle size and wall adhesion”, Powder Technology, Vol. 132, 196– 210, 2003.
    [15] A. Fukunishi and Y. Mori, “Adhesion force between particles and substrate in a humid atmosphere studied by atomic force microscopy”, Advanced Powder Technol, Vol. 17, No. 5, 567–580, 2006.
    [16] C. K. Lee, Y. M. Wang, L. S. Huang and S. M. Lin, “Atomic force microscopy Determination of unbinding force off rate and energy barrier for protein–ligand interaction”, Micron, Vol. 38, 446-461, 2007.
    [17] M. B. Ali, F. Bessueille, J. M. Chovelon, A. Abdelghani, N. J. Renault, M. A. Maaref and C. Martelet, “Use of ultra-thin organic silane films for the improve-ment of gold adhesion to the silicon dioxide wafers for (bio)sensor applications”, Materials Science and Engineering C, Vol. 28, 628-632, 2008.
    [18] Y. Kuriharaa, M. Takamab, M. Masubuchib, T. Ooyaa and T. Takeuchia, “Mi-crofluidic reflectometric interference spectroscopy-based sensing for exploration of protein–protein interaction conditions”, Biosensors and Bioelectronics, Vol. 40(1), 247-251, 2013.
    [19] A. Alessandrini and P. Facci, “AFM: a versatile tool in biophysics”, Measurement Science and Technology, Vol. 16, R65-R92, 2005
    [20] C. T. Lim, E. H. Zhou, A. Li, S. R. K. Vedula and H. X. Fu, “Experimental tech-niques for single cell and single molecule biomechanics”, Materials Science and Engineering C, Vol. 26, 1278-1288, 2006.
    [21] T. Osada, A. Itoh and A. Ikai, “Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force Microscope”, Ultramicroscopy, Vol. 97, 353–357, 2003.
    [22] http://medicine.tamhsc.edu/basic-sciences/sbtm/afm/modes.php
    [23] S. Kidoaki and T. Matsuda, “Adhesion Forces of the Blood Plasma Proteins on Self-Assembled Monolayer Surfaces of Alkanethiolates with Different Func-tional Groups Measured by an Atomic Force Microscope”, Langmuir, Vol. 15, 7639-7646, 1999.
    [24] Y. Nishimura, T. Wakita and H. Shimizu, “Tyrosine Sulfation of the Amino Terminus of PSGL-1 Is Critical for Enterovirus 71 Infection”, PLOS Pathogens, Vol. 6(11), 1-9, 2010.
    [25] S. Lin, Y. M. Wang, L. S. Huang, C. W. Lin, S. M. Hsu and C. K. Lee, “Dy-namic response of glucagon/anti-glucagon pairs to pulling velocity and pH stud-ied by atomic force microscopy”, Biosensors and Bioelectronics, Vol. 22(6), 1013-1019, 2007.
    [26] G. Binning and C. F. Quate, “Atomic Force Microscope”, Physical Review Let-ters, Vol. 56, 9, 1986.
    [27] Bruker Customer Facing, “Dimension FastScan”, 2, 2011.
    [28] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 8, 2000.
    [29] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 9, 2000.
    [30] C. B. Prater, P. G. Maivald, K. J. Kjoller and M. G. Heaton, “TappingMode Im-aging Applications and Technology”, 2004.
    [31] Bruker Customer Facing, “Peak Force - QNM”, 6, 2011.
    [32] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 37, 2000.
    [33] Y. M. Wang “Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy”, Doctoral dissertation, Taiwan University, 2006.
    [34] Veeco Metrology Group, “Scanning Probe Microscopy Training Notebook”, 45, 2000.
    [35] S. B. Velegol and B. E. Logan, “Contributions of Bacterial Surface Polymers, Electrostatics, and Cell Elasticity to the Shape of AFM Force Curves”, Lang-muir, Vol. 18, 5256-5262, 2002.
    [36] A. Bendavid, P. J. Martina, A. Jamtinga and H. Takikawab, “Structural and op-tical properties of titanium oxide thin films deposited by filtered arc deposition”, Thin Solid Films, Vol. 355-356, 6-11, 1999.
    [37] H. Mostéfa-Sba, B. Domenichini and S. Bourgeois, ”Iron deposition on TiO2(110): effect of the surface stoichiometry and roughness”, Surface Science Reports, Vol. 437, 107-115, 1999.
    [38] K. W. Lee, S. Lee and J. W. Park, ”Electroplated Cu and sputtered Ta crystallo-graphic texture degradation in Cu/Ta/SiOF layered structures”, Journal of The Electrochemical Society, Vol. 148, C131-135, 2001.
    [39] H. J. Grabke “Surface and interface segregation in the oxidation of metals”, Surface and Interface Analysis, Vol. 30, 112, 2000.
    [40] C. Y. Rha, W. S. Kim, J. W. Kim and H. H. Park, “Relationship between micro-structure and electrochemical characteristics in steel corrosion”, Applied Surface Science, Vol. 169, 587-592 , 2001.
    [41] S. S. Datwani, R. A. Vijayendran, E. Johnson and S. A. Biondi, “Mixed Alkanethiol Self-Assembled Monolayers as Substrate for Microarraying Appli-cations”, Langmuir, Vol. 20, 4970-4976, 2004.
    [42] D. Losic, J. G. Shapter and J. J. Gooding, “Influence of Surface Topography on Alkanethiol SAMs Assembled from Solution and by Microcontact Printing”, Langmuir, Vol. 17, 3307-3316, 2001.
    [43] J. Lahiri, E. Ostuni and G. M. Whitesides, “Patterning Ligands on Reactive SAMs by Microcontact printing”, Langmuir, Vol. 15, 2055-2066, 1999.
    [44] Y. L. Loo, R. L. Willett, K. W. Baldwin and J. A. Rogers, “Interfacial Chemis-tries for Nanoscale Transfer Printing”, Journal of the American Chemical Society, Vol. 124(26), 7655, 2002.
    [45] Y. Tai, A. Shaporenko, M. Grunze and M. Zharnikov, “Effect of Irradiation Dose in Making an Insulator from a Self-Assembled Monolayer”, The Journal of Physical Chemistry B, Vol. 109, 19411-19415.
    [46] Y. Tai, A. Shaporenko, W. Eck, M. Grunze and M. Zharnikov, “Abrupt change in the structure of self-assembled monolayers upon metal evaporation”, Applied Physics Letter, Vol. 85, 6257-6259, 2004.
    [47] A. Ulman “An Introduction to Ultrathin Organic Film From Langmuir-Blodgett to Self-Assembly”, 1991.
    [48] C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles and R. C. Salvarezza, “Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111)”, Journal of physics: Condensed Matter, Vol. 18, R867-R900, 2006.
    [49] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh and R. G. Nuzzo, ”Comparison of the structures and wetting properties of self-assemble monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold”, Journal of the American Chemical Society, Vol. 113, 7152-7167, 1991.
    [50] W. Geyer, V. Stadler, W. Eck, M. Zharnikov, A. Golzhauser and M. Grunze, “Electron-induced crosslinking of aromatic self-assembled monolayers: Negative resist for nanolithography”, Applied Physics Letters, Vol. 75, 2401-2403, 1999.
    [51] M. B. Ali, F. Bessueille, J. M. Chovelon, A. Abdelghani, N. J. Renault, M. A. Maaref and C. Martelet, “Use of ultra-thin organic silane films for the improve-ment of gold adhesion to the silicon dioxide wafers for (bio)sensor applications”, Materials Science and Engineering C, Vol. 28, 628-632, 2008.
    [52] P. Pallavicini, A. Taglietti, G. Dacarro, Y. Antonio, D. Fernandez, M. Galli, P. Grisoli, M. Patrini, G. S. De Magistris and R. Zanoni, “Self-assembled mono-layers of silver nanoparticles firmly grafted on glass surfaces: Low Ag+ release for an efficient antibacterial activity”, Journal of Colloid and Interface Science, Vol. 350, 110-116, 2010.
    [53] W. F. Stokey “Shock and vibration handbook”, McGraw-Hill, New York, 7.1-7.44, 1989.
    [54] J. P. Cleveland, S. Manne, D. Bocek, and P. K. Hansma, “A nondestructive method for determining the spring constant of cantilevers for scanning force mi-croscopy”, Review of Scientific Instruments, Vol. 64, 1993.
    [55] H. Min, Pierre-Luc Girard-Lauriault, T. Gross, A. Lippitz, P. Dietrich, Wolfgang and E. S. Unger, “Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy”, Analytical and Bioanalytical Chemistry, Vol. 403(2), 613-623, 2012.
    [56] Mohamed M. Chehimi and M. Delamar, “X-ray photoelectron spectroscopy of merocyanine dyes: Part VIII. Partial charge and conjugation of heteroatoms in the electroattractor rings”, Journal of Electron Spectroscopy and Related Phe-nomena, Vol. 50(2), C25-C32, 1990.
    [57] H. Baumann, L. D. Setiawan and D. Gribbin, “Surface studies of keratin fibres and related model compounds using ESCA, 2—intermediate oxidation products of cystyl residues on keratin fibre surfaces and their hydrolytical stability”, Sur-face and Interface Analysis, Vol. 8(5), 219-225, 1986.
    [58] Z. Lv, J. Wang, L. Deng and G. Chen, “Preparation and Characterization of Co-valently Binding of Rat Anti-human IgG Monolayer on Thiol-Modified Gold Surface”, Nanoscale Research Letters, Vol. 4(12), 1403-1408, 2009.
    [59] G. B. Pier, J. B. Lyczak and L. M. Wetzler, “Immunology, Infection, and Immun-ity”, ASM Press, 2004.
    [60] 李端及殷明, “藥理學”, 人民衛生出版社, 第六版.

    無法下載圖示 校內:2018-08-19公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE