簡易檢索 / 詳目顯示

研究生: 高健恩
Kao, Chien-En
論文名稱: 以FPGA實現卷積神經網路應用於影像除霧系統
FPGA Implementation of Image Dehaze System Using Convolutional Neural Network
指導教授: 王明習
Wang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 81
中文關鍵詞: 除霧卷積神經網路VLSIFPGA
外文關鍵詞: Dehaze, CNN, VLSI, FPGA
相關次數: 點閱:85下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技逐漸發達,日常生活中使用電腦視覺系統輔助的情形越漸普遍,以無人車為例,無人車上裝載著影像感測器,並使用影像感測器捕捉的畫面進行辨識與偵測,然而若行駛在一個有霧場景中,可能會因捕捉的畫面不清晰,導致辨識錯誤的情況發生,因此擁有一張清晰的場景影像來增加辨識正確率以降低事故發生的風險是非常重要的。
    在做除霧處理前,必須得到一個有霧影像,並計算出整張影像因懸浮粒子而造成的介質傳輸率圖,以及大氣光所造成的亮度偏差,最後將這三個數值代入大氣散射物理模型中,獲得除霧後的影像。
    本論文以卷積神經網路與FPGA(Field Programmable Gate Array)實現除霧系統,使用一個事先訓練好的卷積神經網路,當影像感測器在一個有霧的場景中接收影像資訊時,有霧資訊影像會先做維度的縮減,再進入到卷積網路中,生成霧霾的相關特徵,得到介質傳輸率圖,並藉由大氣散射物理模型,復原成一張去除霧之影像,最後將這整套系統實作在FPGA(Field Programmable Gate Array)板上,搭配相機鏡頭模組模擬實境情況,得到了一個完整的硬體除霧系統。

    With the development of technology, computer vision system make our life more convenient. For example, the smart car use image sensor to recognize pedestrian or traffic signs, but the recognition error rate of the image sensor increases in bad weather condition, such as fog or haze. It is important to have a clear scene image to decrease recognition error rate and reduce the risk of accidents. In this study, we implement a dehaze system, based on atmospheric scattering model, on Field Programmable Gate Array (FPGA) using convolutional neural network(CNN). The key to achieve haze removal is to estimate a medium transmission map which indicating the light transmission rate under the medium for an input haze image. To reduce the computation time, the input image is down scaled to estimate its haze feature in order to obtain its corresponding medium transmission map. Then the estimated medium transmission map is up scaled to as the same size. The up scaled medium transmission map is used to remove the haze from the input image. To evaluate the effective of our work, both of the software version and FPGA version results are compared. It is shown that they are consistent. Our system is implemented on Altera DE2-115 with camera module, the frame rate is 5 fps under 100MHz clock rate.

    第一章 緒論 1 1.1研究動機 1 1.2問題與目標 4 1.3論文結構 4 第二章 相關知識探討 5 2.1 RGB彩色模型 5 2.2貝爾圖形(Bayer Pattern) 6 2.3 線性內插法(Interpolation) 7 2.3.1 最近內插法(Nearest Neighbor Interpolation) 7 2.3.2 雙線性內插法(Bilinear Interpolation) 7 2.4 硬體描述語言 8 2.5 場可程式邏輯閘陣列(Field Programmable Gate Array) 9 2.6 卷積神經網路(Convolutional Neural Network, CNN) 9 2.6.1 卷積層(Convolutional layer) 10 2.6.2 池化層(Pooling) 11 2.6.3 整流線性單元層(Rectified Linear Units layer) 12 第三章 相關文獻探討 13 3.1 大氣散射原理模型 13 3.2 除霧演算法 15 第四章 硬體實現方法 23 4.1 演算法架構 23 4.1.1 縮小輸入影像 25 4.1.2 卷積神經網路特徵擷取 25 4.1.2.1卷積5x5x3 26 4.1.2.2 最大值輸出(Maxout) 27 4.1.2.3 多尺度卷積(Multi-scale convolution) 28 4.1.2.4 最大池化(Max Pooling) 29 4.1.2.5卷積6x6x48 29 4.1.2.6 雙邊修正線性單元(Bilateral Rectified Linear Unit) 29 4.1.3 引導濾波器 30 4.1.4 除霧 33 4.2硬體架構 34 4.2.1 線緩衝區(Line Buffer) 36 4.2.2 解馬賽克(Demosaicing) 38 4.2.3 幀選取(Frame selection) 38 4.2.4 影像縮減模組 39 4.2.5 定點數(Fixed Point) 40 4.2.6介質傳輸率特徵擷取模組 41 4.2.6.1卷積運算模組 42 4.2.6.2 最大值輸出模組模組 45 4.2.6.3 多尺度線緩衝區(Multi-Line Buffer) 46 4.2.6.4最大池化模組 47 4.2.6.5雙邊修正線性單元模組 48 4.2.7 引導濾波器模組 49 4.2.8 內插放大模組 52 4.2.9除霧模組 56 第五章 實驗結果 58 5.1 演算法效果 58 5.2硬體實現 74 第六章 結論與未來方向 76 參考文獻 77

    [1] Arrigo Benedetti, Andrea Prati, Nello Scarabottolo. “Image convolution on FPGAs: the implementation of a multi-FPGA FIFO structure” , Euromicro Conference ,Vasteras, Sweden, 27 Aug. 1998, pp.123-130.
    [2] A. Horé, D. Ziou, “Image quality metrics: Psnr vs. ssim”, IEEE International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23-26 Aug. 2010, pp. 2366-2369.
    [3] B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-D convolvers for fast digital signal processing”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, No. 3, Vol. 7, Sept. 1999, pp. 299-308.
    [4] Bolun Cai, Xiangmin Xu; Kui Jia, Chunmei Qing, Dacheng Tao, “DehazeNet: An End-to-End System for Single Image Haze Removal”, IEEE Transactions on Image Processing, No. 11, Vol. 25, Nov. 2016, pp.5187-5198.
    [5] Cl´ement Farabet, Cyril Poulet, Jefferson Y. Han, Yann LeCun, “CNP: An FPGA-based processor for Convolutional Networks”, Field Programmable Logic and Applications, Prague, Czech Republic, 31 Aug.-2 Sept. 2009, pp. 32-37.
    [6] Chieh-Chi Kao, Jui-Hsin Lai, Shao-Yi Chien, “VLSI Architecture Design of Guided Filter for 30 Frames/s Full-HD Video”, IEEE Transactions on Circuits and Systems for Video Technology, No. 3, Vol. 24, Mar. 2014, pp.513-524.
    [7] C. Dong, C. C. Loy, K. He, and X. Tang., “Learning a deep convolutional network for image super-resolution”, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 7-13 Dec. 2015, pp. 184-199.
    [8] F. Liu, C. Shen, and G. Lin., “Deep convolutional neural fields for depth estimation from a single image”, Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7-12 June 2015, pp.5162-5170.
    [9] I. Goodfellow, D. Warde-farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout networks”, in Proceedings of the 30th International Conference on Machine Learning (ICML-13), 17-19 June 2013, Atlanta, Georgia, USA, pp. 1319-1327.
    [10] Irfan Riaz, Teng Yu, Yawar Rehman, Hyunchul Shin, “Single image dehazing via reliability guided fusion”, Journal of Visual Communication and Image Representation, Vol.40, Part A, Jun. 2016, pp. 85-97.
    [11] J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, “Deep photo: Model-based photograph enhancement and viewing”, in ACM Transactions on Graphics(TOG) , No. 5, Vol. 27, Jan. 2008, pp. 116-125.
    [12] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, Yichen Wei, “Deformable Convolutional Networks”, International Conference on Computer Vision (ICCV), Venice, Italy, 22-29 Oct. 2017.
    [13] K. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior”, IEEE Trans. Pattern Anal. Mach. Intell. , No. 12, Vol. 33, Dec. 2011, pp. 2341-2353.
    [14] Kaiming He, Jian Sun, Xiaoou Tang, “Guided Image Filtering”, IEEE Transaction on Pattern Analtsis and Machine Intelligence, No. 6, Vol. 35, Jun. 2013, pp.1397-1409.
    [15] K. Tang, J. Yang, and J. Wang, “Investigating haze-relevant features in a learning framework for image dehazing”, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23-28 June, 2014, pp. 2995– 3002.
    [16] Kaiming He, Jian Sun , “Fast guided filter”, Computer Vision and Pattern Recognition, Boston, MA, USA , 7-12 Jun, 2015.
    [17] Magnus Halvorsen, “Hardware Acceleration of Convolutional Neural Networks”, Norwegian University of Science and Technology Department of Computer and Information Science, Master of Science in Computer Science, Jun. 2015.
    [18] Q. Zhu, J. Mai, and L. Shao, “A fast single image haze removal algorithm using color attenuation prior”, IEEE Transactions on Image Processing, No. 11, Vol. 24, June 2015, pp. 3522-3533.
    [19] R. G. Shoup, “Parameterized convolution filtering in a field programmable gate array,” Selected papers from the Oxford 1993 international workshop on field programmable logic and applications on More FPGAs. Oxford, United Kingdom, 1993, pp. 274–280.
    [20] Robby T. Tan, “Visibility in Bad Weather from a Single Image”, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, USA, 23-28 June, 2008, pp. 1-8.
    [21] Shree K. Nayar, Srinivasa G. Narasimhan, “Vision and the Atmosphere,” Internation Journal of Comeputer Vision, No. 3, Vol. 48, Aug. 2002, pp.233-254.
    [22] S. G. Narasimhan and S. K. Nayar, “Contrast restoration of weather degraded images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, No. 6, Vol. 25, June 2003, pp. 713-724.
    [23] S. L. Chen, H. Y. Huang, and C. H. Luo, “A low-cost high-quality adaptive scalar for real-time multimedia applications”, IEEE Transactions on Circuits and Systems for Video Technology, No. 11, Vol. 21, Nov. 2011, pp. 1600-1611.
    [24] Shih-Lun Chen, “VLSI Implementation of a Low-Cost High-Quality Image Scaling Processor”, IEEE Transactions on Circuits and Systems II: Express Briefs, No. 1, Vol. 60, Jan. 2013, pp.31-35.
    [25] Shih-Lun Chen, “VLSI Implementation of an Adaptive Edge-Enhanced Image Scalar for Real-Time Multimedia Applications” , IEEE Transactions on Circuits and Systems for Video Technology, No. 9 , Vol. 23, Sept. 2013, pp.1510-1522.
    [26] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines” , in Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, June 21-24, 2010, pp. 807-814.
    [27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, No. 11, Vol. 86, Nov. 1998, pp. 2278-2324.
    [28] Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization”, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI, USA, USA, 8-14 Dec. 2001, pp. 325-332.
    [29] Yongmei Zhou, Jingfei Jiang, “An FPGA-based Accelerator Implementation for Deep Convolutional Neural Networks”, 2015 4th International Conference on Computer Science and Network Technology (ICCSNT 2015), Harbin, China, 19-20 Dec. 2015, pp.829-832.
    [30] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, Eero P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transaction on Image Processing, No. 4, Vol. 13, Apr. 2004, pp.600-612.
    [31] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. "A unified multi-scale deep convolutional neural network for fast object detection", In ECCV, Amsterdam, The Netherlands, 8-16 Oct. 2016.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE