簡易檢索 / 詳目顯示

研究生: 楊家睿
Yang, Chia-Jui
論文名稱: 散尾葵(Dypsis lutescens)種子抗發炎活性成分研究
Anti-inflammatory Ingredients from the Seeds of Dypsis lutescens (H.Wendl.) Beentje & J.Dransf.
指導教授: 林少紅
Lam, Sio-Hong
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學與藥物科技研究所
Institute of Clinical Pharmacy and Pharmaceutical sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 131
中文關鍵詞: 棕櫚科散尾葵抗發炎超氧陰離子彈性蛋白酶
外文關鍵詞: Arecaceae, Dypsis lutescens, Anti-inflammation, Superoxide anion, Elastase
相關次數: 點閱:132下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 散尾葵(Dypsis lutescens (H.Wendl.) Beentje & J.Dransf.)為棕櫚科(Arecaceae)之植物並因其美麗的外觀在臺灣被廣泛種植為景觀植物。關於散尾葵種子成分的研究並不多,而其種子以農業廢棄物處理。在超氧陰離子產生以及彈性蛋白酶釋放的抑制試驗中,散尾葵之酒精萃取物具有顯著抗發炎活性。因此,本實驗目標為從散尾葵種子分離化合物,並尋找具有抗發炎活性之前驅物。
    散尾葵種子之酒精萃取物首先以甲醇和己烷進行溶劑分劃,甲醇層再以正丁醇及水進行分劃,具有活性之正丁醇分劃層進一步利用一系列層析技術分離。純化後的化合物之結構由核磁共振儀以及質譜儀之圖譜鑑定,而抗發炎活性由超氧陰離子產生以及彈性蛋白酶釋放的抑制試驗評估。散尾葵種子萃取物中,一共分離出24個化合物,包括:2個indole glycoside成分(1-2)、9個benzenoid類成分(3-11)、4個phenylpropanoid類成分(12-15)、1個flavonoid類成分(16)、1個steroid類成分(17)、4個lipid類成分(18-21)以及glycerol (22)、 1-methoxy-2-propyl acetate (23)、dibutyl phthalate (24)。在HPLC分析中,結果顯示正丁醇層之重要的成分都有被分離出。化合物11和21在超氧陰離子產生抑制活性測試中具有顯著抗發炎活性,而彈性蛋白酶釋放的抑制試驗中,化合物21具有顯著抗發炎活性。

    Dypsis lutescens (H.Wendl.) Beentje & J.Dransf. belongs to the Arecaceae family and is widely cultivated as ornamental plants in Taiwan because of its beautiful appearance. The components of D. lutescens seeds are rarely studied and the seeds become agricultural waste. In our preliminary screening of superoxide anion generation and elastase release inhibition assay, the ethanol extracts of the seeds of D. lutescens displayed significant anti-inflammatory activity. Therefore, this study aims to isolate the ingredients from the seeds of D. lutescens, and discover the precursors with anti-inflammatory activity.
    The ethanol extract of the seeds of D. lutescens was partitioned with hexane and methanol. The methanol layer was further partitioned with n-butanol and water. The active n-butanol layer was separated by a series of chromatography techniques. The purified compounds were determined their chemical structures by NMR and mass spectrometry. In total, twenty-four compounds were isolated from the extracts of the seeds of D. lutescens, including two indole glycosides (1-2), together with nine benzenoids (3-11), four phenylpropanoids (12-15) , one flavonoid (16), one steroid (17), four lipids (18-21), glycerol (22), 1-methoxy-2-propyl acetate (23) and dibutyl phthalate (24). In HPLC analyses, the results shows that significant compounds in n-BuOH layer have been isolated. Compounds 11 and 21 show significant anti-inflammatory activity in superoxide anion generation inhibition assay, while compound 21 displays significant anti-inflammatory activity in elastase release inhibition assay.

    中文摘要 i 英文延伸摘要(EXTENDED ABSTRACT) ii 誌謝 vi 總目錄 vii 表目錄(List of Tables) xii 圖目錄(List of Figures) xiii 流程圖目錄(List of Schemes) xix 辭彙縮寫(Glossary of abbreviations) xx 壹、緒論及研究目的 1 1.1 散尾葵植物之簡介 1 1.2 馬島棕屬植物之學名 2 1.3 馬島棕屬植物化學成分之相關研究 8 1.4 馬島棕屬植物藥理活性及用途之相關研究 13 1.5 發炎反應之簡介 16 1.6 研究目的 17 貳、實驗結果與討論 19 2.1 Indole glycoside 成分:N-β-D-glucopyranosyl indole-3-acetic acid (1)、N-β-D-glucopyranosyl indole-3-methyl acetate (2) 22 2.1.1 N-β-D-Glucopyranosyl indole-3-acetic acid (1) 22 2.1.2 N-β-D-Glucopyranosyl indole-3-methyl acetate (2) 23 2.2 Benzenoid 成分:benzoic acid (3), 3-acetyl-benzoic acid (4), 4-acetyl-benzoic acid (5), 4-hydroxybenzoic acid (6), 3,4-dihydroxybenzoic acid (7), methyl-3,4-dihydroxybenzoate (8), vanillic acid (9), vanillic acid 4-O-β-D-glucopyranoside (10), 4-O-β-D-(6-O-vanilloylglucopyranosyl)vanillic acid (11) 25 2.2.1 Benzoic acid (3) 25 2.2.2 3-Acetylbenzoic acid (4)和4-Acetylbenzoic acid (5) 25 2.2.3 4-Hydroxybenzoic acid (6) 26 2.2.4 3,4-Dihydroxybenzoic acid (7) 27 2.2.5 Methyl-3,4-dihydroxybenzoate (8) 27 2.2.6 Vanillic acid (9) 28 2.2.7 Vanillic acid 4-O-β-D-glucopyranoside (10) 30 2.2.8 4-O-β-D-(6-O-Vanilloylglucopyranosyl)vanillic acid (11) 30 2.3 Phenylpropanoid成分:caffeic acid 3-O-β-D-glucopyranoside (12), caffeic acid 4-O-β-D-glucopyranoside (13), ferulic acid 4-O-β-D-glucopyranoside (14), 4-hydroxy-3,5-di-tert-butylphenylpropionic acid (15) 33 2.3.1 Caffeic acid 3-O-β-D-glucopyranoside (12) 33 2.3.2 Caffeic acid 4-O-β-D-glucopyranoside (13) 33 2.3.3 Ferulic acid 4-O-β-D-glucopyranoside (14) 34 2.3.4 4-Hydroxy-3,5-di-tert-butylphenylpropionic acid (15) 37 2.4 Flavonoid 成分:(2S,3R)-catechin (16) 38 2.4.1 (2S,3R)-Catechin (16) 38 2.5 Steroid成分:β-sitosterol-3-O-β-D-glucoside (17) 40 2.5.1 β-sitosterol-3-O-β-D-glucoside (17) 40 2.6 Lipid成分:lauric acid (18), methyl myristoate (19), glyceryl monocaprate (20), glyceryl monomyristate (21) 41 2.6.1 Lauric acid (18) 42 2.6.2 Methyl myristoate (19) 42 2.6.3 Glyceryl monocaprate (20) 42 2.6.4 Glyceryl monomyristate (21) 43 2.7 Others:glycerol (22), 1-methoxy-2-propyl acetate (23), dibutyl phthalate (24) 43 2.7.1 Glycerol (22) 43 2.7.2 1-Methoxy-2-propyl acetate (23) 44 2.7.3 Dibutyl phthalate (24) 45 2.8 成分分析 47 2.9 藥理活性測試 49 2.9.1 超氧陰離子產生抑制活性測試 49 2.9.2 彈性蛋白酶釋放抑制活性測試 50 2.10 結論 52 參、實驗方法 53 3.1 儀器與材料 53 3.1.1 理化性質測定儀器與溶劑試藥 53 3.1.2 分析及成分分離之儀器與材料 53 3.1.3 試劑與溶劑 55 3.1.4 薄層層析展開系統 55 3.2 散尾葵化學成分之抽取與分離 55 3.2.1 正丁醇層之分離 56 3.2.2 化合物7、10、12之分離 56 3.2.2.1 3,4-Dihydroxybenzoic acid (7)之分離 56 3.2.2.2 Vanillic acid 4-O-β-D-glucopyranoside (10)之分離 56 3.2.2.3 Caffeic acid 3-O-β-D-glucopyranoside (12)之分離 57 3.2.3 化合物1、2、6、7、13、14、16、24之分離 57 3.2.3.1 4-Hydroxybenzoic acid (6)、3,4-Dihydroxybenzoic acid (7)、Dibutyl phthalate (24)之分離 57 3.2.3.2 N-β-D-Glucopyranosyl indole-3-acetic acid (1)、N-β-D-Glucopyranosyl indole-3-methyl acetate (2)、Ferulic acid 4-O-β-D-glucopyranoside (14)之分離 57 3.2.3.3 Caffeic acid 4-O-β-D-glucopyranoside (13)之分離 58 3.2.3.4 (2S,3R)-Catechin (16)之分離 58 3.2.4 化合物2、6、9之分離 58 3.2.4.1 N-β-D-Glucopyranosyl indole-3-methyl acetate (2)之分離 58 3.2.4.2 4-Hydroxybenzoic acid (6)、Vanillic acid (9)之分離 58 3.2.5 化合物8、9、11之分離 59 3.2.5.1 Methyl-3,4-dihydroxybenzoate (8)、4-O-β-D-(6-O-Vanilloylglucopyranosyl)-vanillic acid (11)之分離 59 3.2.5.2 Vanillic acid (9)之分離 59 3.2.6 化合物3、4、5、15、22、23之分離 59 3.2.6.1 Glycerol (22)、1-Methoxy-2-propyl acetate (23)之分離 59 3.2.6.2 Benzoic acid (3)之分離 59 3.2.6.3 3-Acetylbenzoic acid (4)和4-Acetylbenzoic acid (5)之分離 60 3.2.6.4 4-Hydroxy-3,5-di-tert-butylphenylpropionic acid (15)之分離 60 3.2.7 化合物15、17~21之分離 60 3.2.7.1 β-sitosterol-3-O-β-D-glucoside (17)之分離 60 3.2.7.2 Glyceryl monocaprate (20)之分離 60 3.2.7.3 4-Hydroxy-3,5-di-tert-butylphenylpropionic acid (15)、Lauric acid (18)、Glyceryl monomyristate (21)之分離 60 3.2.7.4 Methyl myristoate (19)之分離 61 3.3 各成分之物理與光譜數據 66 3.4 正丁醇層之HPLC圖譜測定 77 3.5 各成分之HPLC滯留時間鑑定 77 3.6 抗發炎活性測試流程 78 3.6.1 超氧陰離子產生抑制活性測試 78 3.6.2 彈性蛋白酶釋放抑制活性測試 78 參考文獻 79 附圖 87

    林宜信、張永勳、陳益昇、謝文全、歐潤芝、謝伯舟,臺灣藥用植物資源名錄/第一版,行政院衛生署中醫藥委員會編,2003,頁109。
    國家中醫藥管理局《中華本草》編委會,中華本草(第八冊),上海科學技術出版社,1999,頁451-452。
    許哲夫,遮光及施肥量對黃椰子切葉品質與產量之影響,中國園藝,1999,45(4):頁337-344。
    路統信,中國花卉叢書-椰子類全科,中國花卉雜誌社,1979,頁339-340。
    鄭武燦,台灣植物圖鑑 (下冊),國立編譯館主編,2000,頁1495。
    許哲夫,「遮光」可提高黃椰子切葉品質,高雄區農業專訊,1999,頁13-14。
    潘建志,花材切葉價格攀升 黃椰子受歡迎,2022年6月22日取自中時新聞網,網址:https://news.housefun.com.tw/news/article/280743162069.html,2017。
    The Plant List (2013). Version 1.1.,2022年7月14日取自網址:http://www.theplantlist.org/。
    Kumar, H N K, S D Preethi, E Chandana, and J B Chauhan, Antioxidant activity of the fruits of Dypsis lutescens. International Journal of Research in Pharmaceutical and Biomedical Sciences, 2012. 3(2): p. 757-761.
    Ibrahim, H A, F S Elsharawy, M Elhassab, S Shabana, and E G Haggag, Phytochemical screening and biological evaluation of dypsis leptocheilos leaves extract and molecular docking study of the isolated compounds. International Journal of Pharmacy and Pharmaceutical Sciences, 2020. 12(11): p. 106 - 113.
    El-Ghonemy, M M, W A El-Kashak, T K Mohamed, E A Omara, J Hussein, A-R H Farrag, M I Nassar, and M Y El-Kady, Hepatoprotective activity of Dypsis lutescens against D-galactosamine-induced hepatotoxicity in rats and its phytoconstituents. Asian Pacific Journal of Tropical Biomedicine, 2019. 9(11): p. 467 - 473.
    Yang, D S, K-C Son, and S J Kays, Volatile organic compounds emanating from indoor ornamental plants. HortScience, 2009. 44(2): p. 396 - 400.
    Koyama, T, M Miyata, T Nishimura, and K Yazawa, Suppressive effects by leaves of the Dypsis lutescens palm on fat accumulation in 3T3-L1 cells and fat absorption in mice. Bioscience, Biotechnology, and Biochemistry, 2012. 76(1): p. 189-92.
    Gruca, M, T R van Andel, and H Balslev, Ritual uses of palms in traditional medicine in sub-Saharan Africa: A review. Journal of Ethnobiology and Ethnomedicine, 2014. 10(1).
    Shanmugasundaram, Rajendran, and Ramkumar, Characterization of untreated and alkali treated new cellulosic fiber from an Areca palm leaf stalk as potential reinforcement in polymer composites. Carbohydrate Polymers, 2018. 195: p. 566 - 575.
    El-Ghonemy, M, W El-Kashak, T Mohamed, E Omara, J Hussein, A-R Farrag, M Nassar, and M El-Kady, Hepatoprotective activity of Dypsis lutescens against D-galactosamine-induced hepatotoxicity in rats and its phytoconstituents. Asian Pacific Journal of Tropical Biomedicine, 2019. 9(11): p. 467-473.
    Torres, M l L M, R M P Brandao-Costa, J o V d O Santos, I M r F Cavalcanti, M M d Silva, T P Nascimento, C d O Nascimento, and A L c F Porto, DdeL, a novel thermostable lectin from Dypsis decaryi seeds: Biological properties. Process Biochemistry, 2019. 86: p. 169 - 176.
    Aranda-Jimenez, Y, Z i-L Carlos, C Fuentes-Perez, and E Suarez-Dominguez, Physical properties of the stem of dypsis lutescens and chrysalidocarpus lutescens as a vernacular roofing material. Civil Engineering and Architecture, 2020. 8(4): p. 641 - 645.
    Smarika, C and G Swamynathan, Green synthesis of silver nanoparticles and analysis of bioactive compounds of Dypsis lutescens using GC-MS. Research Journal of Biotechnology, 2022. 17(3): p. 37 - 41.
    Vinay Kumar, A K A, Jon C. Aster, Robbins Basic Pathology. 10 ed. 2017, Philadelphia, PA: Elsevier - Health Sciences Division.
    Medzhitov, R, Origin and physiological roles of inflammation. Nature, 2008. 454(7203): p. 428-35.
    Coussens, L M and Z Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7.
    Wang, J and H Arase, Regulation of immune responses by neutrophils. Annals of the New York Academy of Sciences, 2014. 1319: p. 66-81.
    Nathan, C, Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 2006. 6(3): p. 173-82.
    Christenhusz, M J M and J W Byng, The number of known plants species in the world and its annual increase. Phytotaxa, 2016. 261: p. 201-217.
    Hunter, I R and N Bystriakova, TROPICAL ECOSYSTEMS | Bamboos, Palms and Rattans. Encyclopedia of Forest Sciences, J. Burley, Editor. 2004, Elsevier: Oxford. p. 1675-1681.
    Martins, R C, T d S Filgueiras, and U P Albuquerque, Use and diversity of palm (Arecaceae) resources in central western Brazil. The Scientific World Journal, 2014. 2014: p. 942043.
    Yu, H P, P W Hsieh, Y J Chang, P J Chung, L M Kuo, and T L Hwang, 2-(2-Fluorobenzamido)benzoate ethyl ester (EFB-1) inhibits superoxide production by human neutrophils and attenuates hemorrhagic shock-induced organ dysfunction in rats. Free Radical Biology and Medicine, 2011. 50(12): p. 1737-48.
    Yang, S C, P J Chung, C M Ho, C Y Kuo, M F Hung, Y T Huang, W Y Chang, Y W Chang, K H Chan, and T L Hwang, Propofol inhibits superoxide production, elastase release, and chemotaxis in formyl peptide-activated human neutrophils by blocking formyl peptide receptor 1. The Journal of Immunology, 2013. 190(12): p. 6511-9.
    Schwarz, B and T Hofmann, Isolation, structure determination, and sensory activity of mouth-drying and astringent nitrogen-containing phytochemicals isolated from red currants (Ribes rubrum). Journal of Agricultural and Food Chemistry, 2007. 55(4): p. 1405-10.
    Nandi, J, E L Hutcheson, and N E Leadbeater, Combining photoredox catalysis and oxoammonium cations for the oxidation of aromatic alcohols to carboxylic acids. Tetrahedron Letters, 2021. 63: p. 152632.
    Meng, Q Y, S Wang, and B König, Carboxylation of aromatic and aliphatic bromides and triflates with CO2 by dual visible-light-nickel catalysis. Angewandte Chemie International Edition, 2017. 56(43): p. 13426-13430.
    Ryu, H S, S J Lee, and W K Whang, Isolation of anti-diabetic active compounds from Benincasae Exocarpium and development of simultaneous analysis by HPLC-PDA. Molecules, 2021. 27(1).
    Syafni, N and D Putra, 3,4-dihydroxybenzoic acid and 3,4-dihydroxybenzaldehyde from the fern Trichomanes chinense L.; isolation, antimicrobial and antioxidant properties. Indonesian Journal of Chemistry, 2012. 12: p. 273-278.
    Nguyen, D-M-C, D-J Seo, K-Y Kim, R-D Park, D-H Kim, Y-S Han, T-H Kim, and W-J Jung, Nematicidal activity of 3,4-dihydroxybenzoic acid purified from Terminalia nigrovenulosa bark against Meloidogyne incognita. Microbial pathogenesis, 2013. 59-60: p. 52-59.
    Shaikh, A, T Makhmoor, and M Choudhary, Radical scavenging potential of compounds isolated from Vitex agnus-castus. Turkish Journal of Chemistry, 2010. 34: p. 119.
    Yuan, X, H Wen, Y Cui, M Fan, Z Liu, L Mei, Y Shao, Y Wang, and Y Tao, Phenolics from Lagotis brevituba Maxim. Natural Product Research, 2017. 31(3): p. 362-366.
    Cheng, G-G, Y-P Liu, J Gu, S-Y Qian, H-J Yang, Z-Y Na, and X-D Luo, Phytochemicals and allelopathy of induced water hyacinth against Microcystis aeruginosa. Journal of Natural Products, 2021. 84(6): p. 1772-1779.
    Chen, G-Y, C-Y Dai, T-S Wang, C-W Jiang, C-R Han, and X-P Song, A new flavonol from the stem-bark of Premna fulva. Archive for Organic Chemistry, 2010. 2010(2): p. 179-185.
    Chemam, Y, S Benayache, E Marchioni, M Zhao, P Mosset, and F Benayache, On-line screening, isolation and identification of antioxidant compounds of Helianthemum ruficomum. Molecules (Basel, Switzerland), 2017. 22(2): p. 239.
    Cui, C-B, Y Tezuka, T Kikuchi, H Nakano, T Tamaoki, and J-H Park, Constituents of a fern, Davallia mariesii MOORE. I. isolation and structures of davallialactone and a new flavanone glucuronide. Chemical and Pharmaceutical Bulletin, 1990. 38(12): p. 3218-3225.
    Ha, T J, J H Lee, M H Lee, B W Lee, H S Kwon, C H Park, K B Shim, H T Kim, I Y Baek, and D S Jang, Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against α-glucosidase and aldose reductase. Food Chemistry, 2012. 135(3): p. 1397-403.
    Zhou, X J, L L Yan, P P Yin, L L Shi, J H Zhang, Y J Liu, and C Ma, Structural characterisation and antioxidant activity evaluation of phenolic compounds from cold-pressed Perilla frutescens var. arguta seed flour. Food Chemistry, 2014. 164: p. 150-7.
    Yang, Z-Y, T Kuboyama, K Kazuma, K Konno, and C Tohda, Active constituents from Drynaria fortunei rhizomes on the attenuation of Aβ25–35-induced axonal atrophy. Journal of Natural Products, 2015. 78(9): p. 2297-2300.
    Masullo, M, A Cerulli, C Pizza, and S Piacente, Pouteria lucuma pulp and skin: in depth chemical profile and evaluation of antioxidant activity. Molecules (Basel, Switzerland), 2021. 26(17): p. 5236.
    Aldemir, H, S V Kohlhepp, T Gulder, and T A Gulder, Structure of a putative fluorinated natural product from Streptomyces sp. TC1. Journal of Natural Products, 2014. 77(11): p. 2331-4.
    Chen, L-H, B Sun, Y Zhang, T-J Xu, Z-X Xia, J-F Liu, and F-J Nan, Discovery of a negative allosteric modulator of GABAB Receptors. ACS Medicinal Chemistry Letters, 2014. 5(7): p. 742-747.
    Seto, R, H Nakamura, F Nanjo, and Y Hara, Preparation of epimers of tea catechins by heat treatment. Bioscience, Biotechnology, and Biochemistry, 1997. 61(9): p. 1434-1439.
    Marzouk, M M, S R Hussein, M E Kassem, S A Kawashty, and S I El Negoumy, Phytochemical constituents and chemosystematic significance of Chrozophora tinctoria (L.) Raf. Natural Product Research, 2016. 30(13): p. 1537-41.
    Shomirzoeva, O, J Li, S Numonov, S Atolikshoeva, and H A Aisa, Chemical components of Hyssopus cuspidatus Boriss.:isolation and identification, characterization by HPLC-DAD-ESI-HRMS/MS, antioxidant activity and antimicrobial activity. Natural Product Research, 2020. 34(4): p. 534-540.
    Kamal, R M, M M Sabry, Z Y Aly, and M S Hifnawy, Phytochemical and in-vivo anti-arthritic significance of Aloe thraskii Baker in combined therapy with methotrexate in adjuvant-induced arthritis in Rats. Molecules (Basel, Switzerland), 2021. 26(12): p. 3660.
    Sanchez-Ferrer, A, J Adamcik, and R Mezzenga, Edible supramolecular chiral nanostructures by self-assembly of an amphiphilic phytosterol conjugate. Soft Matter, 2011. 8: p. 149-155.
    Moorthy, J N and K N Parida, Oxidative cleavage of olefins by in situ-generated catalytic 3,4,5,6-tetramethyl-2-iodoxybenzoic acid/oxone. The Journal of Organic Chemistry, 2014. 79(23): p. 11431-11439.
    Zhu, X, C Liu, Y Liu, H Yang, and H-H Fu, A sodium trifluoromethanesulfinate-mediated photocatalytic strategy for aerobic oxidation of alcohols. Chemical communications (Cambridge, England), 2020. 56(82): p. 12443-12446.
    Zheng, Y, Y Zhao, S Tao, X Li, X Cheng, G Jiang, and X Wan, Green esterification of carboxylic acids promoted by tert‐butyl nitrite. European Journal of Organic Chemistry, 2021. 2021(18): p. 2713-2718.
    Sutter, M, W Dayoub, E Métay, Y Raoul, and M Lemaire, 1-O-Alkyl (di)glycerol ethers synthesis from methyl esters and triglycerides by two pathways: catalytic reductive alkylation and transesterification/reduction. Green Chemistry, 2013. 15(3): p. 786-797.
    Batovska, D I, S Tsubota, Y Kato, Y Asano, and M Ubukata, Lipase-mediated desymmetrization of glycerol with aromatic and aliphatic anhydrides. Tetrahedron: Asymmetry, 2004. 15(22): p. 3551-3559.
    Ghandi, M, A Mostashari, M Kargar, and M Barzegar, Efficient synthesis of α-monoglycerides via solventless condensation of fatty acids with glycerol carbonate. Journal of the American Oil Chemists' Society, 2007. 84: p. 681-685.
    Nikam, R and K Gore, A mild and convenient approach for selective acetonide cleavage involved in carbohydrate synthesis using PPA-SiO2. Journal of Carbohydrate Chemistry, 2020. 39: p. 1-12.
    瀚鴻化學,1-Methoxy-2-propyl acetate,2022年6月22日取自瀚鴻化學,網址:http://www.hanhonggroup.com/nmr/nmr_en/B13392.html。
    Liu, X, C Yin, Y Cao, J Zhou, T Wu, and Z Cheng, Chemical constituents from Gueldenstaedtia verna and their anti-inflammatory activity. Natural Product Research, 2017. 32: p. 1-5.
    Ukwubile, C, E Ikpefan, O Otalu, S Njidda, A E Angyu, and M Nnamdi, Nanoencapsulation of phthalate from Melastomastrum Capitatum (Fern.) in Chitosan-Nps as a target mediated drug delivery for multi-drug resistant pathogen. International Journal of Advanced Biological and Biomedical Research, 2021. 9(2): p. 160-180.

    無法下載圖示 校內:2027-07-20公開
    校外:2027-07-20公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE