簡易檢索 / 詳目顯示

研究生: 陳約璋
Chen, Yueh-Chang
論文名稱: 利用分子束磊晶法透過氮化鉻奈米島狀層改善氮化銦奈米柱結晶特性
Improvement for crystalline of InN nanorods with CrN nanoislands by molecular beam epitaxy (MBE)
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 氮化鋁氮化鉻氮化銦緩衝層
外文關鍵詞: AlN, CrN, InN, buffer layers
相關次數: 點閱:113下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們嘗試使用不同的緩衝層與改變其不同的厚度來成長氮化銦奈米柱。我們研究使用新穎的氮化鉻或傳統的氮化鋁當作緩衝層來成長氮化銦奈米柱。相較於未使用緩衝層的情況,10 nm厚的氮化鉻緩衝層能改善後續氮化銦奈米柱的結晶品質。藉由使用氮化鋁40 nm厚的緩衝層所成長出來的氮化銦奈米柱能有一致的形狀與較佳的方向性。而使用氮化鋁80 nm厚的緩衝層所成長出來的氮化銦奈米柱能有最好的結晶品質。我們也觀察到當緩衝層的表面形貌上,存在些許粗糙並有一致且均勻分布的顆粒(grains)能提供後續成長的氮化銦一個合適的成核層(nucleation),使其成長的氮化銦奈米柱有好的方向性及一致的形狀。最後我們提出複合的緩衝層結構 (氮化鋁/氮化鉻) 來成長氮化銦奈米柱。我們發現當氮化鉻插入層為10 nm厚與氮化鋁緩衝層為 80 nm厚的複合結構能大大改善氮化銦的結晶品質與形狀。從XRC (X-ray rocking curve)的分析,氮化銦(0002)峰值的半高寬從未使用氮化鉻插入層的3299 arcsec降低到使用氮化鉻插入層的2115 arcsec。我們也證實氮化鋁緩衝層的結晶品質確實因使用氮化鉻插入層所改善,其半高寬從1.236°降低到0.930°。

    In this thesis, we tried using the different buffer layers and varied their thickness for the growth of InN nanorods. We investigated using the novel CrN or traditional AlN as the buffer layers for the growth of InN nanorods. In comparison with non-buffer layers, the CrN buffer layers with 10 nm could improve the crystal quality for the proceeding InN nanorods. The InN nanorods with a uniform shape and good orientation were grown by using the AlN 40 nm as buffer layers. However, the InN nanorods with a very high crystal quality were grown by using the AlN 80 nm as buffer layers. We also observed the surface morphology of buffer layers with uniform grains and well distribution (a little rough) could provide a suitable nucleation for proceeding growth of InN nanorods, which had the good orientation and uniform shape. Finally, we proposed the multiple buffer layers (AlN/CrN) for the InN nanorods growth. We found the CrN inserting layers (10 nm) with AlN (80 nm) buffer layers could evidently improve the crystal quality and shape of the InN nanorods. From the XRC (X-ray rocking curve) analysis, the FWHM of InN(0002) peak decreased from 3299 arcsec without CrN inserting layers to 2115 arcsec with CrN inserting layers. We also confirmed the crystal quality of AlN buffer layers were indeed improved, the FWHM decreased from 1.236° to 0.930°, by using the CrN inserting layers.

    Abstract (in Chinese)…………………………………I Abstract (in English)…………………………………III Contents……………………………………………VI Table Captions………………………………………VIII Figure Captions……………………………………IX Chapter 1 Introduction……………………………1 1-1 Background…………………………………1 1-2 Organization………………………………5 Chapter 2 Fabrication and Measurement Apparatus…………6 2-1 Radio-frequency Plasma-assisted Molecular beam epitaxy (PA-MBE)………………6 2-2 RF Sputtering system……………………………9 2-3 X-ray Diffraction (XRD)…………………11 2-4 Atomic Force Microscopes (AFM)………13 2-5 Scanning Electron Microscope (SEM)………14 2-6 Transmission Electron Microscopy (TEM)……………………16 Chapter 3 The Fabrication and Characteristics of InN Nanorods with Various Buffer Layers………………17 3-1 Fabrication Process……………………………………18 3-2 Morphology of InN Nanorods……………………………21 3-3 Surface Morphology of Buffer Layers……………………33 3-4 Crystalline Characteristics………………………………38 3-5 InN Nanorods with Multiple Buffer Layers………………43 3-5-1 Morphology of InN Nanorods…………………………44 3-5-2 Surface Morphology of Buffer Layers……………52 3-5-3 Crystalline Characteristics…………………………………57 3-5-4 HRTEM Analysis…………………………………61 3-5-5 Growth Mechanism………………………………65 Chapter 4 Conclusions and Future Works………………66 4-1 Conclusions………………………………………66 4-2 Future Works…………………………………67 Reference……………………………………………68

    [1] http://www.ecse.rpi.edu/~schubert/Light-Emitting-Diodes-dot-org/chap12/F12-12%20Eg%20of%20III-V%20nitride.jpg
    [2] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
    [3] S.K. O’leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83 (1998) 826.
    [4] B.R. Nag, J. Crystal Growth 269 (2004) 35.
    [5] E. Dimakis, E. Iliopoulos, K. Tsagaraki, Th. Kehagias, Ph. Komninou, A. Georgakilas, J. Appl. Phys. 97 (2005) 113520.
    [6] E. Dimakis, E.Iliopoulos, M. Kayambaki, K. Tsagaraki, A. Kostopoulos, G. Konstantinidis, A. Georgakilas, J. Electron. Mater. 36 (2007) 373.
    [7] E. Dimakis, J. Domagata, A. Delimitis, Ph. Komninou, A. Adikimenakis, E. Iliopoulos, A. Georgakilas, Superlattices Microstruct. 40 (2006) 246.
    [8] H. Lu, W.J. Schaff, L.F. Eastman, J. Wu, W. Walukiewicz, D. Look, R.J. Molnar, Mater. Res. Soc. Symp. Proc. 743 (2003) L4.10.1.
    [9] X. Wang, S.B. Che,Y. Ishitani, A. Yoshikawa, Appl. Phys. Lett. 90 (2007) 151901.
    [10] Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys. 42 (2003) 2549.
    [11] V.V. Mamutin, V.A. Vekshin, V.Yu. Davydov, V.V. Ratnikov, T.V. Shubina, S.V. Ivanov, P.S. Kopev, M. Karlsteen, U. Soderwall, M. Willander, Phys. Status Solidi (a) 176 (1999) 247.
    [12] T. Araki, S. Ueta, K. Mizuo, T. Yamaguchi, Y. Saito, Y. Nanishi, Phys. Stat. Solidi (c) 0 (2003) 2798.
    [13] T. Araki, Y. Chiba, M. Nobata, Y. Nishioka, Y. Nanishi, J. Crystal Growth 209 (2000) 368.
    [14] T. Araki, H. Kagatsume, H. Aono, Y. Nanishi, Mater. Res. Soc. Symp. Proc. 639 (2001) G6.20.1.
    [15] J.E. Van Nostrand, K.L. Averett, R. Cortez, J. Boeckl, C.E. Stutz, N.A. Sanford, A.V. Davydov, J.D. Albrecht, J. Crystal Growth 287 (2006) 500.
    [16] G. Cheng, E. Stern, D. Turner-Evans, M.A. Reed, Appl. Phys. Lett. 87 (2006) 253103.
    [17] C. Chang, G. Chi, W. Wang, L. Chen, K. Chen, F. Ren, S.J. Pearton, Appl. Phys. Lett. 87 (2005) 093112.
    [18] J. Chen, G. Cheng, E. Stern, M.A. Reed, P. Avouris, Nano Lett. 7 (2007) 2276.
    [19] H.Y. Chen, C.H. Shen, H.W. Lin, C.H. Chen, C.Y. Wu, S. Gwo, V.Yu. Davydov, A.A. Klochikhin, Thin Solid Films 515 (2006) 961.
    [20] T. Stoica, R.J. Meijers, R. Calarco, T. Richter, E. Sutter, H. Luth, NanoLett.6 (2006) 1541.
    [21] T. Stoica, R. J. Meijers, R. Calarco, T. Richter, H. Luth, J. Crystal Growth 290 (2006) 241.
    [22] J. Grandal, M.A. Sanchez-Garcia, E. Calleja, E. Luna, A. Trampert, Appl. Phys. Lett. 91 (2007) 021902.
    [23] E. Calleja, J. Grandal, M.A. Sanchez-Garcia, M. Niebelschutz, V. Cimalla, O. Ambacher, Appl. Phys. Lett. 90 (2007) 262110.
    [24] M.S. Hu, Appl. Phys. Lett. 90 (2007) 123109.
    [25] C.K. Chao, H.S. Chang, T.M. Hsu, C.N. Hsiao, C.C. Kei, S.Y. Kuo, J.I. Chyi, Nanotechnology 17 (2006) 3930.
    [26] S. Lee, W. Lee, K. Seo, J. Kim, S.H. Han, B. Kim, Nanotechnology 19 (2008) 415202.
    [27] Y.N. Guo, J. Zou, M. Paladugu, H. Wang, Q. Gao, H.H. Tan, C. Jagadish, Appl. Phys. Lett. 89 (2006) 231917.
    [28] C.P.T. Svensson, W. Seifert, M.W. Larsson, L.R. Wallenberg, J. Stangl, G. Bauer, L. Samuelson, Nanotechnology 16 (2005) 936.
    [29] J. Eymery, F. Rieutord, V. Faver-Nicolin, O. Robach, Y.M. Niquet, L. Froberg, T. Martensson, L. Samuelson, Nano Lett. 7 (2007) 2596.
    [30] M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Nature 415 (2002) 617.
    [31] C. Thelander, P. Agarwal, S. Brongersma, J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, W. Riess, B.J. Ohlsson, U. Gosele, L. Samuelson, Materialstoday 9 (2006) 28.
    [32] J.S. Ha, H.J. Lee, S.W. Lee, H.J. Lee, S.H. Lee, H. Goto, M.W. Cho, T. Yao, S.K. Hong, R. Toba, J.W. Lee, J.Y. Lee, Appl. Phys. Lett. 92, (2008) 091906.
    [33] E. H. Parker, The Technology and Physics of Molercular Beam Epitaxy, (1985) 15
    [34] V. Swaminathan and A. T. Macrander, Prentice-Hall, New Jersey, (1991) 138
    [35] Sidney Perkowitz, ACADEMIC PRESS New York, (1993) 50
    [36] R.K. Watts, Vossen and W. Kern, Academic, New York, (1978) 131-174
    [37] C.Y. Chang and S.M. Sze, ULSI technology, 380
    [38] J.L. Vossen, J.J. Cuomo, Thin Film Processes, (1978) 24
    [39] S.I. Shah, Handbook of Thin Film Process Technology P.A 3.0.1
    [40] S.M. Sze, VLSI Technology, 387
    [41] F. Qian, Y. Li, S. Gradecak, D.L. Wang, C.J. Barrelet, C.M. Lieber, Nano Lett. 4 (2004) 1975.
    [42] Y.H. Kim, J.Y. Lee, S.H. Lee, J.E. Oh, H.S. Lee, Appl. Phys. A 80 (2005) 1635.
    [43] L.E. Jensen, M.T. Bjork, S. Jeppesen, A.I. Persson, B.J. Ohlsson, L. Samuelson, Nano Lett. 4 (2004) 1961
    [44] X.F. Duan, C.M. Lieber, J. Am. Chem. Soc. 122 (2000) 188.
    [45] J. Grandal, M.A. Sanchez-Garcia, J. Crystal Growth 278 (2005) 373.
    [46] C.L. Wu, C.H. Shen, H.Y. Chen, S.J. Tsai, H.W. Lin, H.M. Lee, S. Gwo, T.F. Chuang, H.S. Chang, T.M. Hsu, J. Crystal Growth 288 (2006) 247.
    [47] E. Dimakis, E. Iliopoulos, K. Tsagaraki, A. Georgakilas, Appl. Phys. Lett. 86 (2005) 133104.
    [48] E. Dimakis, E. Iliopoulos, K. Tsagaraki, A. Georgakilas, Phys. Status Solidi (a) 203 (2006) 1686.
    [49] A.P. Vajpeyi, A.O. Ajagunna, G. Tsiakatouras, A. Adikimenakis, E. Iliopoulos, K. Tsagaraki, M. Androulidaki, A. Georgakilas, Microelectron. Eng. 86 (2009) 812.
    [50] A.O. Ajagunna, A. Adikimenakis, E. Iliopoulos, K. Tsagaraki, M. Androulidaki, A. Georgakilas, J. Cryst. Growth, 311 (2009) 2058.
    [51] R.K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco, H. Luth, Appl. Phys. Lett. 90 (2007) 123117.
    [52] Y.H. Kim, W.S. Yun, H. Ruh, C.S. Kim, J.W. Kim, Y.H. Shin, M.D. Kim, J.E. Oh, J. Cryst. Growth, 312 (2010) 662.

    無法下載圖示 校內:2015-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE