簡易檢索 / 詳目顯示

研究生: 林振益
Lin, Chen-Yi
論文名稱: 以S和Zn共摻雜TiO2光觸媒在可見光下處理室內空氣污染物甲苯之研究
Photocatalytic Degradation of Indoor Air Pollutant Toluene Under Visible Light with S,Zn-codoping TiO2 Photocatalyst
指導教授: 朱信
Chu, Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 185
中文關鍵詞: 二氧化鈦光觸媒室內空氣甲苯可見光
外文關鍵詞: TiO2, photocatalytic, indoor air, toluene, visible light
相關次數: 點閱:103下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人們每天約有85%的時間待在室內環境中,因此,人體健康與室內環境之品質息息相關。室內環境中之污染物主要為揮發性有機汙染物,其中又以甲苯最具代表性。室內環境中之甲苯主要來自於橡膠製品、塗料、消毒劑、黏著劑和化學藥劑中。甲苯本身具高毒性、致癌性且能長時間存在於室內環境中,所以如何有效移除室內環境中的甲苯成為近年重要議題之一。
    在移除室內環境中之揮發性有機污染物技術中,有活性碳吸附法、增加換氣效率、控制污染源以及光觸媒氧化法,其中光觸媒氧化法比其他處理方法更能將揮發性有機污染物降解成無毒之水氣和二氧化碳,使其近年來備受關注。
    在光觸媒氧化法中,二氧化鈦最常被使用,這是由於二氧化鈦本身較其他光觸媒便宜、穩定、具強氧化能力以及具化學和生物惰性。然而,二氧化鈦本身能隙為3.0 ~ 3.2 eV,其屬紫外光吸收波段,一般到地球表面的太陽光中只含有5%紫外光,因此需要藉由其他改質方法來改善二氧化鈦對於可見光之利用效率,以減少能隙需求。
    在本研究中,主要共摻雜S和Zn來增強二氧化鈦對於可見光之利用效率,且利用TGA、XRD、SEM、EDS、Mapping、TEM、UV-Visible spectroscopy、FT-IR、XPS以及ICP-MS特性分析來進行光觸媒之物化特性分析。
    在XRD、SEM和TEM特性分析中,其結果顯示本研究自製之光觸媒經500°C鍛燒後皆為銳鈦礦結構,且共摻雜S和Zn之光觸媒晶粒大小皆較純二氧化鈦小;在XPS特性分析中,結果表示本研究自製光觸媒,Ti為Ti4+形式、O為O2-形式、S為S6+形式、Zn為Zn2+形式存在於光觸媒中;另外,在光觸媒活性試驗中又以S5Zn0.01/TiO2具有最佳的光催化活性。因此,本研究以S5Zn0.01/TiO2光觸媒探討後續操作參數之影響。在操作參數活性試驗中,隨著相對濕度略微的增加其有轉化率有些改善,但相對濕度因往少增加時,轉化率隨之下降;隨著相對濃度的增加其轉化率亦隨之下降;隨著反應溫度的增加其轉化率隨之增加;隨著停留時間的增加其轉化率亦隨之增加。另外,在Langmuir-Hinshelwood model 1 ~ 7之中,以Langmuir-Hinshelwood model 4較適合描述S5Zn0.01/TiO2光觸媒降解甲苯之動力模擬,反應過程說明如下:(1)首先甲苯和水氣會先吸附在光觸媒表面之活性位基上;(2)爾後,水氣會被電洞(h+)激發成氫氧自由基(˙OH);(3)最後,水氣之氫氧自由基(˙OH)會與甲苯互相反應,進一步將甲苯降解成無毒之二氧化碳與水氣。再由Arrhenius equation可獲得反應活化能Ea為78.10 kJ/mol和碰撞因子A為1.50 × 1013 mol/sec cm3。在S5Zn0.01/TiO2光觸媒對甲苯光催化降解反應中,生成產物有CO2和H2O;副產物則含有苯甲醇、苯甲醛、苯甲酸、丙酮、丁二烯以及醋酸。

    Human spend 85% or more of their lives in indoor. The indoor environment play an important role that can affect human health. So indoor air quality has received much attention. Many volatile organic compounds (VOCs) are major air pollutants in the indoor air, toluene, as one of the most predominant VOCs, is widely applied to rubber, paint, ceiling, disinfectant, tackiness agent and chemical reactants. However, toluene has high toxicity, carcinogenicity and long persistence at indoor environment. So removal of toluene is an important task in the indoor air quality.
    Traditional methods of reducing indoor air pollutant include passing it through activated carbon, increasing the air exchange rate, controlling pollutant source, photocatalytic oxidation process (PCO). Among them, PCO is a promising technology for VOCs removal since it has more advantages compared to other traditional methods. Specifically, PCO is degrading VOCs into nontoxic water vapour and carbon dioxide.
    Semiconductors used as photocatalysts are capable of removal most VOCs effectively. Among them, titanium dioxide is known as the most popular semiconductor because it is cheap, safe, stable with strong oxidation power and chemical and biological inertness. However, the band gap energy of titanium dioxide is 3.0 to 3.2 eV resulted that titanium dioxide displays very little photocatalytic activity under visible light. On the other hand, the solar light reached to the ground of earth only has 5% energy in UV light. Therefore, to enhance the solar efficiency of titanium dioxide under solar light, it is necessary to modify it to facilitate visible light absorption.
    In this study, TiO2, sulfur doped TiO2 and sulfur-zinc codoped TiO2 were prepared by a sol-gel method. The photocatalytic decomposition rate of toluene under visible light was expected to increase by doping sulfur and codoping sulfur-zinc. To analyze the physical and chemical characteristics of photocatalysts we used TGA, XRD, SEM, EDS, Mapping, TEM, UV-Visible spectroscopy, FT-IR, XPS and ICP-MS, respectively. Therefore, we can know the crystalline phase, particle size, absorbance spectrum, band gap, and chemical bonding, which will help us to understand the decomposition rate of toluene.
    The results of XRD, SEM and TEM of the photocatalysts show that codoped S and Zn can reduce the crystalline size and all photocatalysts are anatase phase structure. The XPS results of codoped S and Zn photocatalyst. Show that Ti exists as Ti4+, O as O2-, S as S6+, Zn as Zn2+ on the surface crystal lattices. The activity of photocatalysts was determinated by the measurement of toluene degradation under visible light. According to the results of activity test, S5Zn0.01/TiO2 photocatalyst with choser for further studies. With the operation parameter tests, the results show that the lower toluene concentration and relative humidity could increase toluene conversion. However, lower temperature and retention time would reduce conversion. By fitting with a Langmuir-Hinshelwood model 4, the result shows that Kw is larger than KA, and it also displays that adsorption ability of H2O is large than toluene. The r rises as the temperature growing. The photocatalytic active energy is 78.10 kJ/mol. In S5Zn0.01/TiO2 photocatalytic degradation of toluene under visible light process, the reaction intermediates and products were detected in the gas phase and on the photocatalyst surface, intermediates as benzaldehyde, benzyl alcohol, benzoic acid, acetone, butadiene and acetic acid by FT-IR, products as CO2 and H2O by FT-IR.

    摘要 I Abstract III 致謝 X 目錄 XII 表目錄 XVI 圖目錄 XIX 第一章 前言 1 1-1 研究動機 1 1-2 研究目的 2 第二章 文獻回顧 4 2-1 室內空氣污染物介紹 4 2-1.1 VOCs之定義及來源 5 2-1.2 VOCs特性 6 2-2 甲苯之特性與處理方法 6 2-2.1 甲苯之特性 7 2-2.2 甲苯之常見處理方法 9 2-3 光催化反應 10 2-3.1 光觸媒 10 2-3.2 光催化原理 10 2-3.3 能隙 17 2-4 二氧化鈦摻雜 18 2-4.1 添加金屬原子 19 2-4.2 添加金屬離子 20 2-4.3 添加非金屬元素 21 2-4.4 表面敏化 25 2-4.5 加入其他種半導體 25 2-4.6 金屬、非金屬共摻雜 26 2-5 光觸媒製備 27 2-6 光觸媒降解VOCs之反應動力 28 2-6.1 觸媒異相反應模式 30 2-7 光降解之副產物 37 第三章 研究方法與實驗設備 40 3-1 研究方法 40 3-2 實驗材料與設備 41 3-2.1 試藥與氣體 41 3-2.2 實驗系統裝置 42 3-2.3 分析儀器原理與操作條件 48 3-3 實驗方法與步驟 54 3-3.1 光觸媒製備 54 3-3.2 光觸媒膜製備 56 3-3.3 檢量線製作 56 3-3.4 甲苯氣體模擬系統穩定測試 57 3-3.5 光催化背景實驗 58 第四章 結果與討論 60 4-1 光觸媒之特性分析 60 4-1.1 熱重分析 60 4-1.2 X-射線繞射分析 68 4-1.3 SEM分析 76 4-1.4 EDS分析 78 4-1.5 Mapping分析 82 4-1.6 TEM分析 88 4-1.7 UV-Visible分析 90 4-1.8 FT-IR分析 93 4-1.9 XPS分析 97 4-1.10 ICP-MS分析 105 4-1.11 BET分析 107 4-2 不同成份共摻雜S和Zn光觸媒降解甲苯之探討 110 4-3 操作參數之探討 126 4-3.1 不同相對溼度對光觸媒降解甲苯效率之探討 126 4-3.2 不同甲苯濃度對光觸媒降解甲苯效率之探討 131 4-3.3 不同溫度對光觸媒降解甲苯效率之探討 133 4-3.4 不同停留時間對光觸媒降解甲苯效率之探討 135 4-4 光觸媒動力分析 137 4-4.1 Langmuir-Hinshelwood Model 137 4-4.2 Mars & van Krevelen Model 153 4-5 甲苯光催化降解副產物分析 157 4-6 甲苯礦化率分析 162 第五章 結論與建議 163 5-1 結論 163 5-2 建議 165 參考文獻 166 附錄 181

    Reference Solar Spectral Irradiance: ASTM G-173.
    Alberici, R.M., Jardim, W.F., 1997. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Applied Catalysis B: Environmental 14, 55-68.
    Ang, T.P., Law, J.Y., Han, Y.-F., 2010. Preparation, characterization of sulfur-doped nanosized TiO2 and photocatalytic degradation of methylene blue under visible light. Catalysis Letters 139, 77-84.
    Anpo, M., Shima, T., Kodama, S., Kubokawa, Y., 1987. Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates. Journal of Physical Chemistry 91, 4305-4310.
    Ao, C.H., Lee, S.C., Yu, J.Z., Xu, J.H., 2004. Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs. Applied Catalysis B-Environmental 54, 41-50.
    Arman, S.Y., Omidvar, H., Tabaian, S.H., Sajjadnejad, M., Fouladvand, S., Afshar, S., 2014. Evaluation of nanostructured S-doped TiO2 thin films and their photoelectrochemical application as photoanode for corrosion protection of 304 stainless steel. Surface and Coatings Technology 251, 162-169.
    Arunachalam, A., Dhanapandian, S., Manoharan, C., Sivakumar, G., 2015. Physical properties of Zn doped TiO2 thin films with spray pyrolysis technique and its effects in antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 138, 105-112.
    Ates, M., Topkaya, E., 2015. Nanocomposite film formations of polyaniline via TiO2, Ag, and Zn, and their corrosion protection properties. Progress in Organic Coatings 82, 33-40.
    Ayoko, G.A., 2009. Volatile Organic Ingredients in Household and Consumer Products, 2nd ed. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Bai, L.-j., Kou, G., Gong, Z.-y., Zhao, Z.-m., 2013. Effect of Zn and Ti mole ratio on microstructure and photocatalytic properties of magnetron sputtered TiO2–ZnO heterogeneous composite film. Transactions of Nonferrous Metals Society of China 23, 3643-3649.
    Bandara, J., Mielczarski, J.A., Lopez, A., Kiwi, J., 2001. 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light: Comparison with titanium oxide. Applied Catalysis B: Environmental 34, 321-333.
    Bayati, M.R., Moshfegh, A.Z., Golestani-Fard, F., 2010. Micro-arc oxidized S-TiO2 nanoporous layers: Cationic or anionic doping? Materials Letters 64, 2215-2218.
    Benalioua, B., Mansour, M., Bentouami, A., Boury, B., Elandaloussi, E.H., 2015. The layered double hydroxide route to Bi–Zn co-doped TiO2 with high photocatalytic activity under visible light. Journal of Hazardous Materials 288, 158-167.
    Bettoni, M., Candori, P., Falcinelli, S., Marmottini, F., Meniconi, S., Rol, C., Sebastiani, G.V., 2013. Gas phase photocatalytic efficiency of TiO2 powders evaluated by acetone photodegradation. Journal of Photochemistry and Photobiology a-Chemistry 268, 1-6.
    Bianchi, C.L., Gatto, S., Pirola, C., Naldoni, A., Di Michele, A., Cerrato, G., Crocellà, V., Capucci, V., 2014. Photocatalytic degradation of acetone, acetaldehyde and toluene in gas-phase: Comparison between nano and micro-sized TiO2. Applied Catalysis B: Environmental 146, 123-130.
    Brillas, E., Mur, E., Sauleda, R., Sànchez, L., Peral, J., Domènech, X., Casado, J., 1998. Aniline mineralization by AOP's: anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes. Applied Catalysis B: Environmental 16, 31-42.
    Carp, O., Huisman, C.L., Reller, A., 2004. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 32, 33-177.
    Chang, C.C., Weng, H.S., 1993. Deep oxidation of toluene on perovskite catalyst. Industrial & Engineering Chemistry Research 32, 2930-2933.
    Charanpahari, A., Umare, S.S., Sasikala, R., 2013. Effect of Ce, N and S multi-doping on the photocatalytic activity of TiO2. Applied Surface Science 282, 408-414.
    Chatterjee, D., Dasgupta, S., N Rao, N., 2006. Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light. Solar Energy Materials and Solar Cells 90, 1013-1020.
    Chen, F., Wang, J., Xu, J.Q., Zhou, X.P., 2008a. Visible light photodegradation of organic compounds over V2O5/MgF2 catalyst. Applied Catalysis A: General 348, 54-59.
    Chen, F., Wu, T.H., Zhou, X.P., 2008b. The photodegradation of acetone over VOx/MgF2 catalysts. Catalysis Communications 9, 1698-1703.
    Chen, W., Zhang, J.S., 2008. UV-PCO device for indoor VOCs removal: Investigation on multiple compounds effect. Building and Environment 43, 246-252.
    Chesalov, Y.A., Chernobay, G.B., Andrushkevich, T.V., 2013. FTIR study of the surface complexes of β-picoline, 3-pyridine-carbaldehyde and nicotinic acid on sulfated TiO2 (anatase). Journal of Molecular Catalysis A: Chemical 373, 96-107.
    Choi, W.Y., Termin, A., Hoffmann, M.R., 1994. Effects of Metal-Ion Dopants on the Photocatalytic Reactivity of Quantum-Sized TiO2 Particles. Angewandte Chemie-International Edition in English 33, 1091-1092.
    Christoforidis, K.C., Figueroa, S.J.A., Fernández-García, M., 2012. Iron–sulfur codoped TiO2 anatase nano-materials: UV and sunlight activity for toluene degradation. Applied Catalysis B: Environmental 117–118, 310-316.
    Crişan, M., Brăileanu, A., Răileanu, M., Zaharescu, M., Crişan, D., Drăgan, N., Anastasescu, M., Ianculescu, A., Niţoi, I., Marinescu, V.E., Hodorogea, S.M., 2008. Sol–gel S-doped TiO2 materials for environmental protection. Journal of Non-Crystalline Solids 354, 705-711.
    Dawson, H.E., McAlary, T., 2009. A Compilation of Statistics for VOCs from Post-1990 Indoor Air Concentration Studies in North American Residences Unaffected by Subsurface Vapor Intrusion. Ground Water Monitoring and Remediation 29, 60-69.
    Debono, O., Thevenet, F., Gravejat, P., Hequet, V., Raillard, C., Lecoq, L., Locoge, N., 2011. Toluene photocatalytic oxidation at ppbv levels: Kinetic investigation and carbon balance determination. Applied Catalysis B-Environmental 106, 600-608.
    Demeestere, K., Dewulf, J., Witte, B.D., Van Langenhove, H., 2005. Titanium dioxide mediated heterogeneous photocatalytic degradation of gaseous dimethyl sulfide: Parameter study and reaction pathways. Applied Catalysis B: Environmental 60, 93-106.
    Dozzi, M.V., Livraghi, S., Giamello, E., Selli, E., 2011. Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization. Photochemical & Photobiological Sciences 10, 343-349.
    Duminica, F.D., Maury, F., Hausbrand, R., 2007. N-doped TiO2 coatings grown by atmospheric pressure MOCVD for visible light-induced photocatalytic activity. Surface and Coatings Technology 201, 9349-9353.
    Ferrari-Lima, A.M., Marques, R.G., Fernandes-Machado, N.R.C., Gimenes, M.L., 2013. Photodegradation of petrol station wastewater after coagulation/flocculation with tannin-based coagulant. Catalysis Today 209, 79-83.
    Fogler, H.S., 1999. Elements of chemical reaction engineering.
    Fox, M.A., Dulay, M.T., 1993. Heterogeneous photocatalysis. Chemical reviews 93, 341-357.
    Frankenburg, W.G., Rideal, E.E.K., Komarewsky, V.V.I., 1952. Advances in catalysis. Academic Press.
    Fu, X.Z., Clark, L.A., Zeltner, W.A., Anderson, M.A., 1996. Effects of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene. Journal of Photochemistry and Photobiology a-Chemistry 97, 181-186.
    Grätzel, M., 2001. Photoelectrochemical cells. Nature 414, 338-344.
    Guo, S., Han, S., Mao, H., Dong, S., Wu, C., Jia, L., Chi, B., Pu, J., Li, J., 2014. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: The role of microporous amorphous/crystalline composite structure. Journal of Power Sources 245, 979-985.
    Hamadanian, M., Reisi-Vanani, A., Razi, P., Hoseinifard, S., Jabbari, V., 2013. Photodeposition-assisted synthesis of novel nanoparticulate In, S-codoped TiO2 powders with high visible light-driven photocatalytic activity. Applied Surface Science 285, Part B, 121-129.
    Hamal, D.B., Klabunde, K.J., 2007. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2. Journal of Colloid and Interface Science 311, 514-522.
    Harizanov, O., Ivanova, T., Harizanova, A., 2001. Study of sol–gel TiO2 and TiO2–MnO obtained from a peptized solution. Materials Letters 49, 165-171.
    He, C., Yu, Y., Zhou, C.H., Hu, X.F., 2002. Structure and photocatalytic activities of Ag/TiO2 thin films. Journal of Inorganic Materials 17, 1025-1033.
    He, Y.M., Sheng, T.L., Wu, Y., Chen, J.S., Fu, R.B.A., Hu, S.M., Wu, X.T., 2009. Visible light-induced degradation of acetone over SO42-/MoOx/MgF2 catalysts. Journal of Hazardous Materials 168, 551-554.
    Higashimoto, S., Tanihata, W., Nakagawa, Y., Azuma, M., Ohue, H., Sakata, Y., 2008. Effective photocatalytic decomposition of VOC under visible-light irradiation on N-doped TiO2 modified by vanadium species. Applied Catalysis a-General 340, 98-104.
    Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., 1995. Environmental applications of semiconductor photocatalysis. Chemical reviews 95, 69-96.
    Hong, S.-S., Lee, M.S., Park, S.S., Lee, G.-D., 2003. Synthesis of nanosized TiO2/SiO2 particles in the microemulsion and their photocatalytic activity on the decomposition of p-nitrophenol. Catalysis Today 87, 99-105.
    Hung, C.-H., Mariñas, B.J., 1997. Role of water in the photocatalytic degradation of trichloroethylene vapor on TiO2 films. Environmental Science & Technology 31, 1440-1445.
    Hung, W.-C., Fu, S.-H., Tseng, J.-J., Chu, H., Ko, T.-H., 2007. Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO2 prepared by the sol–gel method. Chemosphere 66, 2142-2151.
    Jo, W.-K., Yang, C.-H., 2010. Visible-light-induced photocatalysis of low-level methyl-tertiary butyl ether (MTBE) and trichloroethylene (TCE) using element-doped titanium dioxide. Building and Environment 45, 819-824.
    Jo, W.K., Kim, J.T., 2010. Decomposition of gas‐phase aromatic hydrocarbons by applying an annular‐type reactor coated with sulfur‐doped photocatalyst under visible‐light irradiation. Journal of Chemical Technology and Biotechnology 85, 485-492.
    Kanai, N., Nuida, T., Ueta, K., Hashimoto, K., Watanabe, T., Ohsaki, H., 2004. Photocatalytic efficiency of TiO2/SnO2 thin film stacks prepared by DC magnetron sputtering. Vacuum 74, 723-727.
    Kolarik, B., Wargocki, P., Skorek-Osikowska, A., Wisthaler, A., 2010. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods. Building and Environment 45, 1434-1440.
    Kolinko, P.A., Filippov, T.N., Kozlov, D.V., Parmon, V.N., 2012. Ethanol vapor photocatalytic oxidation with uranyl modified titania under visible light: Comparison with silica and alumina. Journal of Photochemistry and Photobiology A: Chemistry 250, 72-77.
    Korologos, C.A., Nikolaki, M.D., Zerva, C.N., Philippopoulos, C.J., Poulopoulos, S.G., 2012. Photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase over TiO2-based catalysts. Journal of Photochemistry and Photobiology A: Chemistry 244, 24-31.
    Korologos, C.A., Philippopoulos, C.J., Poulopoulos, S.G., 2011. The effect of water presence on the photocatalytic oxidation of benzene, toluene, ethylbenzene and m-xylene in the gas-phase. Atmospheric Environment 45, 7089-7095.
    Ksibi, M., Rossignol, S., Tatibouët, J.-M., Trapalis, C., 2008. Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Materials Letters 62, 4204-4206.
    Legrand-Buscema, C., Malibert, C., Bach, S., 2002. Elaboration and characterization of thin films of TiO2 prepared by sol–gel process. Thin Solid Films 418, 79-84.
    Li, G.L., Wang, G.H., 1999. Synthesis of nanometer-sized TiO2 particles by a microemulsion method. Nanostructured Materials 11, 663-668.
    Li, J., Na, H., Zeng, X., Zhu, T., Liu, Z., 2014. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn–Ag/HZSM-5 catalysts. Applied Surface Science 311, 690-696.
    Li, X., Xiong, R., Wei, G., 2008. S–N Co-doped TiO2 photocatalysts with visible-light activity prepared by sol–gel method. Catalysis Letters 125, 104-109.
    Lin, Y.-H., Tseng, T.-K., Chu, H., 2014. Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation. Applied Catalysis A: General 469, 221-228.
    Liu, G., Sun, C.H., Smith, S.C., Wang, L.Z., Lu, G.Q., Cheng, H.M., 2010. Sulfur doped anatase TiO2 single crystals with a high percentage of {001} facets. Journal of Colloid and Interface Science 349, 477-483.
    Liu, R., Zhou, X., Yang, F., Yu, Y., 2014. Combination study of DFT calculation and experiment for photocatalytic properties of S-doped anatase TiO2. Applied Surface Science 319, 50-59.
    Liu, S., Chen, X., 2008. A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation. Journal of Hazardous Materials 152, 48-55.
    Liu, S.X., Qu, Z.P., Han, X.W., Sun, C.L., 2004. A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catalysis Today 93-5, 877-884.
    Liu, Y.H., Quan, X., Zhao, Y.Z., Chen, S., Zhao, H.M., 2005. Removal of ternary VOCs in air streams at high loads using a compost-based biofilter. Biochemical Engineering Journal 23, 85-95.
    Lv, K.L., Zuo, H.S., Sun, J., Deng, K.J., Liu, S.C., Li, X.F., Wang, D.Y., 2009. (Bi, C and N) codoped TiO2 nanoparticles. Journal of Hazardous Materials 161, 396-401.
    Ma, Y., Zhang, J., Tian, B., Chen, F., Wang, L., 2010. Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity. Journal of Hazardous Materials 182, 386-393.
    Madarász, J., Brăileanu, A., Crişan, M., Pokol, G., 2009. Comprehensive evolved gas analysis (EGA) of amorphous precursors for S-doped titania by in situ TG–FTIR and TG/DTA–MS in air: Part 2. Precursor from thiourea and titanium(IV)-n-butoxide. Journal of Analytical and Applied Pyrolysis 85, 549-556.
    Mase, A., Sugita, T., Mori, M., Iwamoto, S., Tokutome, T., Katayama, K., Itabashi, H., 2013. Study of vanadium-modified N/Si co-doped TiO2 in aqueous solution and its photocatalytic activity. Chemical Engineering Journal 225, 440-446.
    Mo, J., Zhang, Y., Xu, Q., Lamson, J.J., Zhao, R., 2009a. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246.
    Mo, J.H., Zhang, Y.P., Xu, Q.J., 2013. Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation. Applied Catalysis B-Environmental 132, 212-218.
    Mo, J.H., Zhang, Y.P., Xu, Q.J., Lamson, J.J., Zhao, R.Y., 2009b. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment 43, 2229-2246.
    Mo, J.H., Zhang, Y.P., Xu, Q.J., Yang, R., 2009c. Effect of TiO2/adsorbent hybrid photocatalysts for toluene decomposition in gas phase. Journal of Hazardous Materials 168, 276-281.
    Murai, K.-I., Endo, K., Nakagawa, T., Yamahata, A., Moriga, T., 2012. STUDY OF VISIBLE LIGHT REACTIVE PHOTOCATALYST TIO2 PREPARED WITH THIOUREA. International Journal of Modern Physics: Conference Series. World Scientific, pp. 19-24.
    Naik, B., Parida, K., Gopinath, C.S., 2010. Facile synthesis of N-and S-incorporated nanocrystalline TiO2 and direct solar-light-driven photocatalytic activity. The Journal of Physical Chemistry C 114, 19473-19482.
    Nakamura, R., Tanaka, T., Nakato, Y., 2004. Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. Journal of Physical Chemistry B 108, 10617-10620.
    Niu, Y., Xing, M., Zhang, J., Tian, B., 2013. Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol. Catalysis Today 201, 159-166.
    Obee, T.N., Brown, R.T., 1995. TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1, 3-butadiene. Environmental Science & Technology 29, 1223-1231.
    Obee, T.N., Hay, S.O., 1997. Effects of moisture and temperature on the photooxidation of ethylene on Titania. Environmental Science & Technology 31, 2034-2038.
    Ohno, T., Akiyoshi, M., Umebayashi, T., Asai, K., Mitsui, T., Matsumura, M., 2004. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General 265, 115-121.
    Ohno, T., Miyamoto, Z., Nishijima, K., Kanemitsu, H., Xueyuan, F., 2006. Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations. Applied Catalysis A: General 302, 62-68.
    Ongwandee, M., Moonrinta, R., Panyametheekul, S., Tangbanluekal, C., Morrison, G., 2011. Investigation of volatile organic compounds in office buildings in Bangkok, Thailand: Concentrations, sources, and occupant symptoms. Building and Environment 46, 1512-1522.
    Paul Harrison, R.S.a.S.B., 2008. Indoor Air Pollution, 2nd ed. A.B. Kay, A.P. Kaplan, J. Bousquet, P.G. Holt.
    Peng, X.-L., Yao, M.-M., Li, F., Sun, X.-H., 2012. Microstructures and photocatalytic properties of S doped nanocrystalline TiO2 films. Particulate Science and Technology 30, 81-91.
    Pennell, K.G., Scammell, M.K., McClean, M.D., Ames, J., Weldon, B., Friguglietti, L., Suuberg, E.M., Shen, R., Indeglia, P.A., Heiger-Bernays, W.J., 2013. Sewer Gas: An Indoor Air Source of PCE to Consider During Vapor Intrusion Investigations. Ground Water Monitoring and Remediation 33, 119-126.
    Qi, H., Sun, D.-z., Chi, G.-q., 2007. Formaldehyde degradation by UV/TiO2/O3 process using continuous flow mode. Journal of Environmental Sciences 19, 1136-1140.
    Qiu, J., Zhang, S., Zhao, H., 2012. Nanostructured TiO2 photocatalysts for the determination of organic pollutants. Journal of Hazardous Materials 211–212, 381-388.
    Quici, N., Vera, M.L., Choi, H., Puma, G.L., Dionysiou, D.D., Litter, M.I., Destaillats, H., 2010. Effect of key parameters on the photocatalytic oxidation of toluene at low concentrations in air under 254 + 185 nm UV irradiation. Applied Catalysis B: Environmental 95, 312-319.
    Ren, L., Yang, F.D., Zhang, Y.M., Yang, J., Li, M.Y., 2008. Preparation and visible-light responsive photocatalytic activity of N-doped TiO2 photocatalyst. Chinese Journal of Inorganic Chemistry 24, 541-546.
    Rengifo-Herrera, J.A., Pierzchała, K., Sienkiewicz, A., Forró, L., Kiwi, J., Pulgarin, C., 2009. Abatement of organics and Escherichia coli by N, S co-doped TiO2 under UV and visible light. Implications of the formation of singlet oxygen (1O2) under visible light. Applied Catalysis B: Environmental 88, 398-406.
    Rockafellow, E.M., Stewart, L.K., Jenks, W.S., 2009. Is sulfur-doped TiO2 an effective visible light photocatalyst for remediation? Applied Catalysis B-Environmental 91, 554-562.
    Sanchez-Dominguez, M., Morales-Mendoza, G., Rodriguez-Vargas, M.J., Ibarra-Malo, C.C., Rodriguez-Rodriguez, A.A., Vela-Gonzalez, A.V., Perez-Garcia, S.A., Gomez, R., Synthesis of Zn-doped TiO2 nanoparticles by the novel oil-in-water (O/W) microemulsion method and their use for the photocatalytic degradation of phenol. Journal of Environmental Chemical Engineering.
    Sasikala, R., Shirole, A.R., Sudarsan, V., Jagannath, Sudakar, C., Naik, R., Rao, R., Bharadwaj, S.R., 2010. Enhanced photocatalytic activity of indium and nitrogen co-doped TiO2–Pd nanocomposites for hydrogen generation. Applied Catalysis A: General 377, 47-54.
    Satterfield, C.N., 1991. Heterogeneous catalysis in industrial practice.
    Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E., Hidaka, H., 1995. Exploiting the interparticle electron transfer process in the photocatalysed oxidation of phenol, 2-chlorophenol and pentachlorophenol: chemical evidence for electron and hole transfer between coupled semiconductors. Journal of Photochemistry and Photobiology A: Chemistry 85, 247-255.
    Sivakumar, S., Krishna Pillai, P., Mukundan, P., Warrier, K.G.K., 2002. Sol–gel synthesis of nanosized anatase from titanyl sulfate. Materials Letters 57, 330-335.
    Sleiman, M., Conchon, P., Ferronato, C., Chovelon, J.M., 2009. Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B-Environmental 86, 159-165.
    Song, H., Zhou, G., Wang, C., Jiang, X., Wu, C., Li, T., 2013. Synthesis and photocatalytic activity of nanocrystalline TiO2 co-doped with nitrogen and cobalt (II). Research on Chemical Intermediates 39, 747-758.
    Spurr, R.A., Myers, H., 1957. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry 29, 760-762.
    Storch, H., 1935. Activity and Activation Energy in Heterogeneous Catalysis of Gas Reactions1. Journal of the American Chemical Society 57, 1395-1398.
    Sun, S., Ding, J., Bao, J., Gao, C., Qi, Z., Yang, X., He, B., Li, C., 2012. Photocatalytic degradation of gaseous toluene on Fe-TiO2 under visible light irradiation: A study on the structure, activity and deactivation mechanism. Applied Surface Science 258, 5031-5037.
    Sung, M., Kato, S., Kawanami, F., Sudo, M., 2010. Evaluation of an air-cleaning unit having photocatalytic sheets to remove acetaldehyde from indoor air. Building and Environment 45, 2002-2007.
    Tang, F., Yang, X.D., 2012. A "deactivation" kinetic model for predicting the performance of photocatalytic degradation of indoor toluene, o-xylene, and benzene. Building and Environment 56, 329-334.
    Tunga Salthammer, M.f.B., 2009. Review Occurrence, Dynamics and Reactions of Organic Pollutants in the Indoor Environment. Clean 2009, 37 (6), 417- 435.
    Umebayashi, T., Yamaki, T., Itoh, H., Asai, K., 2002. Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids 63, 1909-1920.
    Vildozo, D., Portela, R., Ferronato, C., Chovelon, J.M., 2011. Photocatalytic oxidation of 2-propanol/toluene binary mixtures at indoor air concentration levels. Applied Catalysis B-Environmental 107, 347-354.
    Vincent, G., Marquaire, P.M., Zahraa, O., 2009. Photocatalytic degradation of gaseous 1-propanol using an annular reactor: Kinetic modelling and pathways. Journal of Hazardous Materials 161, 1173-1181.
    Wang, P., Yap, P.-S., Lim, T.-T., 2011. C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Applied Catalysis A: General 399, 252-261.
    Wang, S.B., Ang, H.M., Tade, M.O., 2007. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33, 694-705.
    Wang, Y., Xue, X., Yang, H., Luan, C., 2014. Preparation and characterization of Zn/Ce/SO42−-doped titania nano-materials with antibacterial activity. Applied Surface Science 292, 608-614.
    Wang, Y.X., Huang, L., Sun, L.C., Xie, S.Y., Xu, G.L., Chen, S.R., Xu, Y.F., Li, J.T., Chou, S.L., Dou, S.X., Sun, S.G., 2012. Facile synthesis of a interleaved expanded graphite-embedded sulphur nanocomposite as cathode of Li-S batteries with excellent lithium storage performance. Journal of Materials Chemistry 22, 4744-4750.
    Wolkoff, P., 1995. Volatile organic compounds - Sources, measurements, emissions, and the impact on indoor air quality. Indoor Air, 1-73.
    Wu, J.F., Hung, C.H., Yuan, C.S., 2005. Kinetic modeling of promotion and inhibition of temperature on photocatalytic degradation of benzene vapor. Journal of Photochemistry and Photobiology a-Chemistry 170, 299-306.
    Xiang, Q., Yu, J., Jaroniec, M., 2011. Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. Physical Chemistry Chemical Physics 13, 4853-4861.
    Xu, J.-H., Li, J., Dai, W.-L., Cao, Y., Li, H., Fan, K., 2008. Simple fabrication of twist-like helix N,S-codoped titania photocatalyst with visible-light response. Applied Catalysis B: Environmental 79, 72-80.
    Yang, G., Yan, Z., Xiao, T., 2012. Low-temperature solvothermal synthesis of visible-light-responsive S-doped TiO2 nanocrystal. Applied Surface Science 258, 4016-4022.
    Yates, J.R., Eng, J., Mccormack, A.L., Moji, T., Pious, D., 1995. Studies of Immunological Pathways by Using Tandem Mass-Spectrometry and Database Searching. Abstracts of Papers of the American Chemical Society 209, 122-ANYL.
    Ye, X.J., Chen, D., Gossage, J., Li, K.Y., 2006. Photocatalytic oxidation of aldehydes: Byproduct identification and reaction pathway. Journal of Photochemistry and Photobiology a-Chemistry 183, 35-40.
    Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.W., Wang, J.S., Tang, Q., Saito, F., Sato, T., 2003. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry 13, 2996-3001.
    Yu, C., Cai, D., Yang, K., Yu, J.C., Zhou, Y., Fan, C., 2010. Sol–gel derived S,I-codoped mesoporous TiO2 photocatalyst with high visible-light photocatalytic activity. Journal of Physics and Chemistry of Solids 71, 1337-1343.
    Yu, C., Jimmy, C.Y., 2009. A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity. Catalysis Letters 129, 462-470.
    Yu, Q.L., Brouwers, H.J.H., 2009. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study. Applied Catalysis B-Environmental 92, 454-461.
    Zeng, T., Liu, H.J., Shu, Z., 2012. Discussion the Mechanism of Sulfur and Phosphorus Doped TiO2. Advanced Materials Research 393, 1157-1160.
    Zhang, F., Wang, M., Zhu, X., Hong, B., Wang, W., Qi, Z., Xie, W., Ding, J., Bao, J., Sun, S., Gao, C., 2015a. Effect of surface modification with H2S and NH3 on TiO2 for adsorption and photocatalytic degradation of gaseous toluene. Applied Catalysis B: Environmental 170–171, 215-224.
    Zhang, L., Li, L., Mou, Z., Li, X., 2012. Study on microstructure and catalytic performance of B, C, N co-dopped TiO2. Procedia Engineering 27, 552-556.
    Zhang, P.Y., Liu, J., 2004. Photocatalytic degradation of trace hexane in the gas phase with and without ozone addition: kinetic study. Journal of Photochemistry and Photobiology a-Chemistry 167, 87-94.
    Zhang, W., Liu, W., Wang, C., 2002. Tribological behavior of sol–gel TiO2 films on glass. Wear 253, 377-384.
    Zhang, W., Wang, S., Li, J., Yang, X., 2015b. Photocatalytic hydrogen production from methanol aqueous solution under visible-light using Cu/S–TiO2 prepared by electroless plating method. Catalysis Communications 59, 189-194.
    Zhang, Y., Martin, A., Berndt, H., Lücke, B., Meisel, M., 1997. FTIR investigation of surface intermediates formed during the ammoxidation of toluene over vanadyl pyrophosphate. Journal of Molecular Catalysis A: Chemical 118, 205-214.
    Zhang, Y., Shen, Y., Gu, F., Wu, M.M., Xie, Y., Zhang, J.C., 2009. Influence of Fe ions in characteristics and optical properties of mesoporous titanium oxide thin films. Applied Surface Science 256, 85-89.
    Zhang, Y., Wang, L., Liu, B., Zhai, J., Fan, H., Wang, D., Lin, Y., Xie, T., 2011. Synthesis of Zn-doped TiO2 microspheres with enhanced photovoltaic performance and application for dye-sensitized solar cells. Electrochimica Acta 56, 6517-6523.
    Zhao, W.R., Dai, J.S., Liu, F.F., Bao, J.Z., Wang, Y., Yang, Y., Yang, Y.A., Zhao, D.Y., 2012. Photocatalytic oxidation of indoor toluene: Process risk analysis and influence of relative humidity, photocatalysts, and VUV irradiation. Science of the Total Environment 438, 201-209.
    Zhong, L.X., Haghighat, F., Blondeau, P., Kozinski, J., 2010. Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications. Building and Environment 45, 2689-2697.
    Zhou, M.H., Yu, J.G., 2008. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. Journal of Hazardous Materials 152, 1229-1236.
    Zhou, X.-T., Ji, H.-B., Huang, X.-J., 2012. Photocatalytic degradation of methyl orange over metalloporphyrins supported on TiO2 degussa P25. Molecules 17, 1149-1158.
    Zhu, Z., Liu, F., Zhang, W., 2015. Fabricate and characterization of Ag/BaAl2O4 and its photocatalytic performance towards oxidation of gaseous toluene studied by FTIR spectroscopy. Materials Research Bulletin 64, 68-75.
    Zou, X., Li, X., Qu, Z., Zhao, Q., Shi, Y., Chen, Y., Tade, M., Liu, S., 2012. Photocatalytic degradation of gaseous toluene over TiO2–SiO2 composite nanotubes synthesized by sol–gel with template technique. Materials Research Bulletin 47, 279-284.
    王奕凱, 邱宏明, 李秉傑, 合, 1988. 非均勻系催化原理與應用. 渤海堂文化公司印行.
    台中市環保局, 2012. 101 年度「中部科學工業園區空氣污染物稽查管制計畫」.
    行政院環保署, 2012. 植栽美化與淨化室內空氣.
    行政院環保署, 2013. 揮發性有機物空氣污染管制及排放標準.
    吳政峰, 2005. 溫度與濕度效應對光催化分解氣相揮發性有機物之影響. 國立中山大學環境工程研究所, 博士論文. 國立中山大學, p. 218.
    吳義林, 2013. 揮發性有機物控制技術.
    呂立德, 1991. 「化工動力與化工熱力」. 粒工出版社.
    李秉傑、邱宏明、王亦凱合譯, 1988. 非均勻系催化原理與應用. 渤海堂.
    沈克鵬, 2008. 各行業VOCs廢氣特性暨控制技術及選擇案例介紹.
    林文川, 2009. 製程VOCs廢氣之收集與處理. 工業污染防治, p. 69.
    林麗娟, 1994. X 光繞射原理及其應用. 工業材料雜誌 86, 100-109.
    洪崇軒, 2006. 高污染空品區室內微環境有害空氣污染物暴露資料建置及污染源貢獻量分析.
    袁中新、洪崇軒、甯蜀光, 2011. 石化 /石油煉製業揮發性有機污染物與微量異味質監測技術建置、本土排放資料庫建立、異常增量評估及排放管制策略研擬.
    高濂, 张青红, 2004. 奈米光觸媒. 五南圖書出版股份有限公司.
    張木彬, 2009. VOCs污染特性與防制技術.
    陳玫瑾, 2012. 以S摻雜TiO2光觸媒在可見光下處理二甲基硫之研究. 環境工程所. 國立成功大學, p. 140.
    陳富亮, 2003. 最新奈米光觸媒應用技術. 普林斯頓國際有限公司, 台灣台北縣五股鄉.
    陳慧英, 黃定加, 朱秦億, 1999. 溶膠凝膠法在薄膜製備上之應用. 化工技術, 無機薄膜之應用專輯 11.
    曾昭衡, 2012. 室內空氣品質的管理重點與改善對策.
    黃柳青譯, 1993 「化工動力學與反應設計下冊」. 科技出版社.
    新竹市環保局, 2012. 101 年度新竹市揮發性有機物及餐飲業稽查管制計畫.
    駱勇全, 2009. 均質與異質光觸媒對室內揮發有機處理效率評估之研究.
    藤嶋昭, 謝文權, 2006. 圖解光觸媒.
    垰田博史著, 張晶, 楊健, 2003. 光觸媒圖解. 商周出版.

    下載圖示 校內:2020-07-13公開
    校外:2020-07-13公開
    QR CODE