| 研究生: |
江柏叡 Chiang, Po-Jui |
|---|---|
| 論文名稱: |
硒碲化鎘奈米微粉之合成與特性研究 Synthesis and Characterization of Cadmium Seleno-Telluride Nanoparticles |
| 指導教授: |
陳慧英
Chen, Huey-Ing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 奈米粒子 、碲化鎘 、硒碲化鎘 、化學濕式法 、能隙 、螢光放光 |
| 外文關鍵詞: | CdTe, chemical wetness route, nanoparticles, photoluminescence, bandgap, CdSeTe |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究係在水溶液相中以硝酸鎘、硒氫化鈉與碲氫化鈉反應合成硒碲化鎘(CdSeTe)三元化合物奈米微粉,以獲得具有寬能隙及高放光強度之新型材料。實驗中除探討CdTe微粉之合成外,亦合成三種不同結構型式之CdSeTe微粉:Type I-CdSe(core)/CdTe(shell),Type II-CdTe(core)/CdSe(shell),Tpye III-CdSe-CdTe,並探討其微粉晶態、粒徑及分佈、形狀與吸放光性質。
實驗結果顯示,在控制pH=10.5下,添加2.5倍鎘離子濃度之硫醇丙酸(MPA)為錯合劑可避免氫氧化鎘之雜相存在,且可得到具放光性質之面心立方型碲化鎘奈米微粉。當降低前驅鹽濃度、提高pH值及調整適當硫醇丙酸濃度時均可使微粉粒徑降低。而在低pH值(pH<5.6)時,所得之碲化鎘微粉溶液亦不具有放光特性。
在合成CdSeTe微粉時,控制Cd:Se:Te比值為2:1:1,添加硫醇丙酸(2.5倍鎘離子濃度)為錯合劑,在35oC、pH10.5下合成CdSeTe微粉,結果顯示三種型式之微粉粒徑均小於10nm。經UV吸收及PL放光測試,微粉之UV吸收能隙TypeI、II、III分別為2.40~2.61、2.38~2.64、2.53~2.68eV,而放光則以TypeIII微粉之放光強度最佳。
由本研究結果可知,本法可在溫和之水相條件下,合成CdSeTe三元化合物微粉。尤值一提的是, 藉由改變pH值、前驅鹽濃度、MPA添加量及Cd/Se/Te比值,可調變所得微粉之粒徑大小、能隙結構及吸放光性質。
In order to obtain new materials with wide bandgap and high photoluminescence, CdSeTe nanoparticles have been synthesized by chemical wetness technique starting from the reaction of Cd(NO3)2 with NaHSe/NaHTe in aqueous solution. At first, the preparation of CdTe nanoparticles was investigated. Furthermore, three types of CdSeTe nanoparticles were obtained by different routes: Type I- CdTe(shell)/CdSe(core), Type II-CdSe(shell)/CdTe(core), and Type III-CdSe-CdTe. The characteristics of prepared particles including crystalline structure, particle size and size distribution, UV/Vis absorption and photoluminescence properties were also studied.
The experimental results show that by controlling the pH value (pH=10.5) and adding 3-mercaptopropionic acid (MPA) which 2.5 times of concentration of cadmium ion, the fcc-structured CdTe nanoparticles of photoluminescnece can be obtained without the presence of Cd(OH)2 impurities. Furthermore, it is found that the particle size decreases with reducing the pH value, the concentrations of precursors, and the amounts of MPA. However, at lower pH, e.g. pH<5.6, no photoluminescent property can be found for the resulting CdTe particles. Under the synthesis conditions of Cd:Se:Te = 2:1:1, 35oC, and pH10.5, the obtained particles for three types of CdSeTe, their particle sizes are all below 10nm. The absorption bandgap for Type I, II, and III particles are 2.40-2.61, 2.38-2.64, 2.53-2.68 eV respectively. Among three types of samples, Type III particles demonstrate the highest photoluminescence.
From this study, it is found that the CdSeTe nanoparticles can be synthesized in mild aqueous conditions. It is worth to note, the particle size, bandgap structure, and UV/PL properties of resulting nanoparticles can be modulated by adequately controlling the experimental conditions, such as pH value, precursor concentration, MPA concentration, and Cd/Se/Te ratio.
1.G. Schmid, “Nanoparticles: From Theory to Application,” Wiley-VCH, Weinheim (2004).
2.S. M. Sze, “Physics of Semiconductor Device,” Wiley Interscience Publication, New York, (1981).
3.E. Benamar, M. Rami, M. Fahoume, F. Chraibi, and A. Ennapoi, “Electrodeposition and Characterization of CdSexTe1-x
Semiconducting Thin Films,” Solid State Sci., 1, 301-310 (1999).
4.K. Walzer, U. J. Quaade, D. S. Ginger, N. C. Greenham, and K. Stokbro, “Adsorption Behavior and Current–Voltage Characteristics of CdSe Nanocrystals on Hydrogen-Passivated Silicon,” J. Appl. Phys., 92(3), 1343-1440 (2002).
5.A. Y. Nazzal, L. Qu, X. Peng, and M. Xiao, “Photoactivated CdSe Nanocrystals as Nanosensors for Gases,” Nano Lett., 3(6), 819-822 (2003).
6.W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid Nanorod-Polymer Solar Cells,” Science, 295, 2425-2427 (2002).
7.J. Versluys, R. Clauws, P. Nollet, and et al., “Characterization of Deep Defects in CdS/CdTe Thin Film Solar Cells Using Deep Level Transient Spectroscopy,” Thin Solid Films, 451-52, 434-438 (2004).
8.V. I. Klimov, A. A. Mikhailovsky, and S. Xu, “Optical Gain and Stimulated Emission in Nanocrystal Quantum Dots,” Science, 290, 314-317 (2000).
9.S. Kim, B. Fisher, and H. J. Eisler, “Type-II Quantum Dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) Heterostructure,” J Am. Chem. Soc., 125(38), 11466-11467 (2003).
10. D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, and P. L. McEuen, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature, 389, 699-701 (1997).
11. D. L. Feldheim, and C. D. Keating, “Self-Assembly of Single Electron Transistors and Related Devices,” Chem. Soc. Rev., 27(1), 1-12 (1998).
12. Y. P. Rakovich, L. Yang, and E. M. McCabe, “Whispering Gallery Mode Emission from a Composite System of CdTe Nanocrystals and a Spherical Microcavity,” Semi. Sci. and Tech., 18 (11), 914-918 (2003).
13. S. O. Kognovitskii, A. V. Nashchekin, and R. V. Sokolov, “Fullerene-Containing C60–CdTe(CdSe) Composite Nanostructures,” Tech. Phys. Lett., 29 (6), 477-479 (2003).
14. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, and U. Banin, “Efficient Near-Infrared Polymer Nanocrystal Light-Emitting Diodes,” Science, 295, 1506-1508 (2002).
15. S. H. Kim, G. Markovich, S. Rezvani, S. H. Choi, K. L. Wang, and J. R. Heath, “Tunnel Diodes Fabricated from CdSe Nanocrystals Monolayers,” Appl. Phys. Lett., 74(2), 317-319 (1999).
16. H. Yao, S. Takahara, H. Mizuma, and T. Kozeki, “Linear and Nonlinear Optical Properties of CdS and CdSe Nanoparticles Stabilized with Poly(N-vinyl-2-pyrrolidone),” Jpn. J. App. Phys., 35, 4633-4638 (1996).
17. P. T. Tran, E. R. Goldman, and G. P. Anderson, “Use of Luminescent CdSe-ZnS Nanocrystal Bioconjugates in Quantum Dot-Based Nanosensors,” Physica Status Solidi B-Basic Research, 229 (1), 427-432 (2002).
18. F. Patolsky, R. Gill, and Y. Weizmann, “Lighting-Up the Dynamics of Telomerization and DNA Replication by CdSe-ZnS Quantum Dots,” J. Am. Chem. Soc., 125, 13918-13919 (2003).
19. K. Nakazawa, T. Takahashi, and S. Watanabe, “Large-area CdTe Diode Detector for Space Application,” Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 512 (1-2), 412-418 (2003).
20. M. Niraula, A. Nakamura, and T. Aoki, “Diode-type CdTe Strip And Linear Array Detectors for Gamma-Ray Detection and Imaging,” IEEE Transactions on Nuclear Science, 49 (5), 2250-2255 Part 1 (2002).
21. T. Tsutsui, “A Light-Emitting Sandwich Filling,” Nature, 420, 752-753 (2002).
22. Y. P. Chen, and G. Brill, “MBE Growth of CdSeTe/Si Composite Substrate for Long-Wavelength IR HgCdTe Applications,” J. Cryst. Growth, 252, 270-274 (2003).
23. 葉展瑋, “碲化鎘磊晶層及奈米結構之成長與物性分析”, 私立中原大學應用物理所碩士論文 (2003).
24. F. C. Peiris, Z. J. Weber, and Y. Chen, “Optical Properties of CdSexTe1-x Epitaxial Films Studied by Spectroscopic Ellipsometry,” J. Electro. Mater., 33 (6), 724-727 (2004).
25. D. Noda, T. Aoki, and Y. Nakanishi, “Epitaxial Growth of CdSeTe Films by Remote Plasma Enhanced Metal Organic Chemical Vapor Deposition,” Vacuum, 59, 701-707 (2000).
26. M. U. Khan, S. Naseem, and M. I. Munawwar, “SEL Deposition of Cadmium Chalcogenides and Optimization for Photovoltaic Use,” Mod. Phys. Lett. B , 13(26), 953-959 (1999).
27. N. Muthukumarasamy, and R. Balasundaraprabhu, “Compositional Dependence of Optical Properties of Hot Wall Deposited CdSexTe1-x Thin Films,” Physica Status Solidi A-Applied Research, 201(10), 2312-2318 (2004).
28. K. R. Murali, and V. Subramanian, “Characteristics of Synthesized CdSeTe Powder,” J. Mater. Sci., 34, 3417-3419 (1999).
29. P. D. More, G. S. Shahane, and L. P. Deshmukh, “Spectro-Structural Characterisation of CdSe1−xTex Alloyed Thin Films,” Mater. Chem. Phys., 80, 48-54 (2003).
30. G.. Mingyuan, K. Stefan, and M. Helmuth, “Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification,” J. Phys. Chem. B, 102, 8360-8363 (1998).
31. V. B. Patil, P. D. More, D. S. Sutrave, and G. S. Shahane, “A New Process for Deposition of the CdTe Thin Films,” Mater. Chem. Phys., 65, 282-287 (2000).
32. H. Zhang and B. Yang, “X-ray Photoelectron Spectroscopy Studies of the Surface Composition of Highly Luminescent CdTe Nanoparticles in Multilayer Films,” Thin Solid Films, 418, 169-174 (2002).
33. B. Haobo, G. Yanjun, and L. Zhen, “Enhancement Effect of Illumination on the Photoluminescence of Water-Soluble CdTe Nanocrystals: Toward Highly Fluorescent CdTe/CdS Core-Shell Structure,” Chem. Mater., 16, 3853-3859 (2004).
34. N. P. Gaponik, and D. V. Talapin, “Electrochemical Synthesis of CdTe Nanocrystal/Polypyrrole Composites for Optoelectronic Applications,” J. Mater. Chem., 10, 2163-2166 (2000).
35. Y. Wang, Z. Tang, and X. Liang, “SiO2-Coated CdTe Nanowires: Bristled Nano Centipedes,” Nano Letters, 4(2), 225-231 (2004).
36. A. L. Rogach, “Nanocrystalline CdTe and CdTe(S) Particles: Wet Chemical Preparation, Size-dependent Optical Properties and Perspectives of Optoelectronic Applications,” Mater. Sci. Eng. B, 69-70, 435-440 (2000).
37. N. Wei, A. Lijia, and J. Bingzheng, “A Facile Synthesis of CdSe and CdTe Nanorods Assisted by Myristic Acid,” Chemistry Letters, 33(7), 836-837(2004).
38. Z. . X. Deng, L. Li, and Y. Li, “Novel Inorganic-organic-layered Structures: Crystallographic Understanding of both Phase and Morphology Formations of One-Dimensional CdE (E = S, Se, Te) Nanorods in Ethylenediamine,” Inorg. Chem., 42, 2331-2341 (2003).
39. J. Yang, X. L. Yang, S. H. Yu, X. M. Liu, and Y. T. Qian, “CdTe Nanocrystallites with Different Morphologies and Phases by Solvothermal Process,” Material Research Bulletin, 35, 1509-1515 (2000).
40. R. Reisfeld, “Nanosized Semiconductor Particles in Glasses Prepared by the Sol-Gel Method: Their Optical Properties and Potential Uses,” J. Alloys Compounds, 341, 56-61 (2002).
41. M. Kuniaki, W. Hiroto, and H. Tetsuji, “Potential-pH Diagram of the Cd-Te-NH3-H2O System and Electrodeposition Behavior of CdTe from Ammoniacal Alkaline Baths,” J. Electro. Soc., 146(5), 1798-1803 (1999).
42. A. E. Rakhshani, “Electrodeposited CdTe—Optical Properties,” J. Appl. Phys., 81(12), 7988-7993 (1997).
43. S. A. Gamboa, P. J. Sebastian, and M. A. Rivera, “Characterization of p-CdTe Obtained by CVTG Tellurization of Electrodeposited CdTe,” Solar Energy Materials and Solar Cells, 52, 293-299 (1998).
44. C. B. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and Characterization of Nearly Monodisperse CdE (E = sulfur, selenium, tellurium) Semiconductor Nanocrystallites,” J. Am. Chem. Soc., 115(19), 8706-8715 (1993).
45. T. Trindade, and P. O’Brien, “Synthesis of CdS and CdSe Nanoparticles by Thermolysis of Diethyldithio- or Diethyldiseleno- Carbamates of Cadmium,” J. Mater. Chem., 6(3), 343-347 (1996).
46. T. Trindade, and P. O’Brien, “Synthesis of CdS and CdSe Nanocrystallites Using a Novel Single-Molecule Precursors Approach,” Chem. Mater., 9(2), 523-530 (1997).
47. L. Manna, E. C. Scher, and A. P. Alivisators, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals,” J. Am. Chem. Soc., 122(51), 12700-12706 (2000).
48. T. Nann and J. Riegler, “Monodisperse CdSe Nanorods at Low Temperatures,” Chem. Eur. J., 8(20), 4791-4795 (2002).
49. E. Kucur, J. Riegler, G. A. Urban, and T. Nann, “Determination of Quantum Confinement in CdSe Nanocrystals by Cyclic Voltammetry,” J. Chem. Phys., 119(4), 2333-2337 (2003).
50. J. Hambrock, A. Birkner, and R. A. Fischer, “Synthesis of CdSe Nanoparticles Using Various Organometallic Cadmium Precursors,” J. Mater. Chem., 11(12), 3197-3201 (2001).
51. W. Wang, Y. Geng, P. Yan, F. Liu, Y. Xie, and Y. Qian, “Synthesis and Characterization of MSe (M=Zn, Cd) Nanorods by a New Solvothermal Method,” Inorg. Chem. Commun., 2, 83-85 (1999).
52. Y. Li, H. Liao, Y. Fan, L. Li, and Y. Qian, “A Solvothermal Synthetic Route to CdE (E=S, Se) Semiconductor Nanocrystalline,” Mater. Chem. Phys., 58, 87-89 (1999).
53. O. Palchik, R. Kerner, A. Gedanken, A. M. Weiss, M. A Slifkin, and V. Palchik, “Microwave-assisted Polyol Method for the Preparation of CdSe “Nanoballs”,” J. Mater. Chem., 11, 874-878 (2001).
54. J. Zhu, O. Palchik, S. Chen, and A. Gedanken, “Microwave Assisted Preparation of CdSe, PbSe, and Cu2-xSe Nanoparticles,” J. Phys. Chem. B, 104, 7344-7347 (2000).
55. J. P. Ge, Y. D. Li, and G. Q Yang, “Mechanism of Aqueous Ultrasonic Reaction: Controlled Synthesis, Luminescence Properties of Amorphous Cluster and Nanocrystalline CdSe,” Chem. Commum., 17, 1826-1827 (2002).
56. E. Hao, H. Sun, Z. Zhou, J. Liu, B. Yang, and J. Shen, “Synthesis and Optical Properties of CdSe and CdSe/CdS Nanoparticles,” Chem. Mater., 11, 3096-3102 (1999).
57. X. D. Ma, X. F. Qian, J. Yin, H. A. Xi, and Z. K. Zhu, “Preparation and Characterization of Polyvinyl Alcohol-Capped CdSe Nanoparticles at Room Temperature,” J. Colloid Interface Sci., 252, 77-81 (2002).
58. A. L. Rogach, A. Kornowski, M. Gao, A. Eychmuller, and H. Weller, “Synthesis and Characterization of a Size Series of Extremely Small Thiol-Stabilized CdSe Nanocrystals,” J. Phys. Chem. B, 103(16), 3065-3069 (1999).
59. S. F. Wuister, F. van Driel, and A. Meijerink, “Luminescence and Growth of CdTe Quantum Dots and Clusters,” Phys. Chem. Chem. Phys., 5, 1253-1258 (2003).
60. D. V. Talapin, S. Haubold, and A. L. Rogach, “A Novel Organometallic Synthesis of Highly Luminescent CdTe Nanocrystals,” J. Phys. Chem. B, 105, 2260-2263 (2001).
61. Y. Mastai et al., “Plused Sonoelectrochemical Synthesis of Cadmium Selenide Nanoparticles,” J. Am. Chem. Soc., 121, 10047-10052 (1999).
62. J. Zhu, X. Liao, X. Zhao, and J Wang, “Photochemical Synthesis and Characterization of CdSe Nanoparticles,” Mater. Lett., 47, 339-343 (2001).
63. M. Danek, K. F. Jensen, C. B. Murry, and M. G. Bawendi, “Preparation of II–VI Quantum Dot Composites by Electrospray Organometallic Chemical Vapor Deposition,” J. Cryst. Growth, 145, 714-720 (1994).
64. M. A. Vairavamurthy, W. S. Goldenberg, S. Ouyang, and S. Khalid, “The Interaction of Hydrophilic Thiols with Cadmium: Investigation with a Simple Model, 3-Mercaptopropionic Acid,” Mar. Chem., 70, 181-189 (2000).
65. 黃忠良, 精密陶瓷材料概念, 復漢出版社, 2001年, 台南.
66. J. W. Mullin, “Crystallization,” Butterworth-Heinemann, Boston, (1993).
67. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci., 30(1), 545-610 (2000).
68. X. Peng, J. Wickham, and A. P. Alivisatos, “Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions,” J. Am. Chem. Soc., 120(21), 5343-5344 (1998).
69. Z. Qiao, Y. Xie, J. Huang, Y. Zhu, and Y. T. Qian, “Single-Step Confined Growth of CdSe/Polyacrylamide Nanocomposites under �-Irradiation,” Radiat. Phys. Chem., 58, 287-292 (2000).
70. J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. Review,” J. Phys. Chem., 75(8), 991-1024 (1971).
71. M. A. Malik, P. O’Brien, and N. Revapresadu, “Semiconductor Nanoparticles: Their Properties, Synthesis and Potential for Application,” S. Afr. J. Sci., 96(2), 55-60 (2000).
72. T. Iton, Y. Iwabuchi, and T. Kirihara, “Size-Quantized Excitons in Microcrystals of Cuprous Halides Embedded in Alkali-Halide Matrices,” Phys. Status Solide B, 146, 531-542 (1988).
73. A. I. Ekimov, Al. L. Efros, and M. G. Ivanov, “Donor-like Exciton in Zero-Dimension Semiconductor Structures,” Solid State Commun., 69(5), 565-568 (1989).
74. L. A. Efros and M. Rosen, “The Electronic Structure of Semiconductor Nanocrystals,” Annu. Rev. Mater. Sci., 30, 475-512 (2000).
75. A. D. Yoffe, “Low-dimensional Systems: Quantum Size Effects and Electronic Properties of Semiconductor Microcrystallites (Zero-Dimensional Systems) and Some Quasi-two-dimensional Systems,” Adv. Phys., 42(2), 173-266 (1993).
76. M. G. Burt, “The Justification for Applying the Effective-mass Approximation to Microstructures,” J. Phys.:Condens. Matter, 4, 6651-6690 (1992).
77. L. E. Brus, “Electron–electron and Electron-hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State,” J. Chem. Phys., 80(9), 4403-4409 (1984).
78. Y. Kayanuma, “Quantum-size Effects of Interacting Electrons and Holes in Semiconductor Microcrystals with Spherical Shape,” Phys. Rev. B, 38(14), 9797-9805 (1988).
79. Y. Wang and N. Herron, “Nanometer-sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties,” J. Phys. Chem., 95(2), 525-532 (1991).
80. P. E. Lippens and M. Lannoo, “Calculation of the Band Gap for Small CdS and ZnS Crystallites,” Phys. Rev. B, 39(15), 10935-10942 (1989).
81. P. E. Lippens and M. Lannoo, “Comparison Between Calculated and Experimental Values of the Lowest Excited Electronic State of Small CdSe Crystallites,” Phys. Rev. B, 41(9), 6079-6081 (1990).
82. M. V. R. Krishna and R. A. Friesner, “Exciton Spectra of Semiconductor Clusters,” Phys. Rev. Lett., 67(5), 629-632 (1991).
83. L. W. Wang and A. Zunger, “Pseudopotential Calculations of Nanoscale CdSe Quantum Dots,” Phys. Rev. B, 53(15), 9579-9582 (1996).
84. J. H. Collet, “Electron-hole Plasma Dynamics in CdTe in the Picosecond Regime,” Phys. Rev. B, 40(18), 12296–12303 (1989).
85. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders, and S. B. Warner, “The Science and Design of Engineering Materials,” McGraw-Hill, USA, (1999).
86. 葉怡燕, “雙酮基銪化物之發光性質探討,” 國立中山大學化學研究所碩士論文 (2002).
87. 黃合建, “光敏性硒化鎘奈米微粉之合成與特性研究,” 國立成功大學化學工程學系碩士論文 (2004).
88. D. L. Klayman and T. S. Griffin, “Reaction of Selenium with Sodium Borohydride in Protic Solvents. a Facile Method for the Introduction of Selenium into Organic Molecules,” J. Am. Chem. Soc., 95(1), 197-199 (1973).
89. G. Jones, W. R. Jackson, and C. Y. Chio, “Solvent Effects on Emission Yield and Lifetime for Coumarin Laser Dyes. Requirements for a Rotatory Decay Mechanism,” J. Phys. Chem., 89, 294-300, (1985).
90. A. E. Martell, “Stability Constants of Metal-ion Compleses,” 2nd ed., (London:Chemical Society), 1964.
91. L. Spanhel, M. Haase, H. Weller, and A. Henglein, “Photochemistry of Colloidal Aemiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles,” J. Am. Chem. Soc., 109(19), 5649-5655 (1987).
92. H. Zhang, Z. Zhou, B. Yang, and M. Gao, “The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-stabilized CdTe Nanoparticles,” J. Phys. Chem. B, 107(1), 8-13 (2003).
93. M. Belcastro, T. Marino, N. Russo, and E. Sicilia, “Structure and Coordination Modes in the Interaction Between Cd2+ and 3-Mercaptopropionic Acid,” J. Phys. Chem. A., 108, 8407-8410 (2004).
94. L. Qu and X. Peng, “Control of Photoluminescence Properties of CdSe Nanocrystals in Growth,” J. Am. Chem. Soc., 124(9), 2049-2055 (2002).
95. H. Fu and A. Zunger, “InP Quantum Dots: Electronic Structure, Surface Effects, and the Redshifted Emission,” Phys. Rev. B, 56, 1496-1508 (1997).
96. B.O. Dabbousi and F.V. Mikulec, “(CdSe)ZnS Core-Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites,” J. Phys. Chem. B, 101, 9463-9475 (1997).
97. X. Peng, M. C. Schlamp, A. V. Kadavanich, and A. P. Alivisatos, “Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility,” J. Am. Chem. Soc., 119, 7019-7029 (1997).
98. A. P. Alivisatos, “Perspectives on the Physical Chemistry of Semiconductor Nanocrystals,” J. Phys. Chem., 100, 13226-13239 (1996).
99. A. H. Nethercot, “Prediction of Fermi Energies and Photoelectric Threshold Based on Electronegativity Concepts,” Phys. Rev. Lett., 33, 1088-1091 (1974).
100.S. A. Ivanov, J. Nanda, and A. Piryatinski, “Light Amplification Using Inverted Core/Shell Nanocrystals: Towards Lasing in the Single-Exciton Regime,” J. Phys. Chem. B., 108, 10625-10630 (2004).
101.V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, ” Quantization of Multiparticle Auger Rates in Semiconductor Quantum Dots,” Science, 287, 1011-1013 (2000).
102.H. Htoon, J. A. Hollingsworth, R. Dickerson, and V. I. Klimov, “Effect of Zero- to One-Dimensional Transformation on Multiparticle Auger Recombination in Semiconductor Quantum Rods,” Phys. Rev. Lett., 91, 227401 (2003).
103.林春松, “硒化鎘鋅薄膜與硒化鋅/硒化鎘鋅多重量子井螢光光譜的時間解析研究,” 國立中山大學物理研究所碩士論文 (2003).
104.S. Uthanna and P. J. Reddy, “Structural and Electrical Properties of CdSexTe1−x Thin Films,” Solid State Commun., 45, 979-980 (1983).
105.J. P. Mangalhara, R. Thangaraj, and O. P. Agnihotri, “Structural, Optical and Photoluminescence Properties of Electron Beam Evaporated CdSe1−xTex Films,” Solar Energy Mater., 19, 157-165 (1989).
106.A. P. Belyaev and I. P. Kalinkin, “Conduction Processes in Inhomogeneous CdSexTe1-x Semiconductors,” Thin Solid Films, 158, 25-36 (1988).
107.L. Baufay, D. Dispa, and A. Pigeolet, “Laser Induced Formation of CdTexSe1-x Semiconducting Compounds,” J. Cryst. Growth, 59, 143-147 (1982).
108.J. Steininger and A. J. Strauss, “Phase Diagrams and Crystal Growth of Pseudobinary Alloy Semiconductors,” J. Cryst. Growth, 13-14, 657-662 (1972).
109.A. D. Stuckes and G. Farrell, “Electrical and Thermal Properties of Alloys of CdTe and CdSe,” J. Phys. Chem. Solid, 25(5), 477-482 (1964).
110.S. G. Hickey, S. F. Wuister, and D. Vanmaekelbergh, “Single-step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals,” J. Phys. Chem. B, 107, 489-496 (2003).
111.D. V. Talapin, A. L. Rogach, and E. V. Shevchenko, “Dynamic Distribution of Growth Rates within the Ensembles of Colloidal II-VI and III-V Semiconductor Nanocrystals as a Factor Governing Their Photoluminescence Efficiency,” J. Am. Chem. Soc., 124(20), 5782-5790 (2002).
112.C. D. Wagner, “Handbook of X-Ray Photoelectron Spectroscopy,” Perkin-Elmer, MN, (1979).