簡易檢索 / 詳目顯示

研究生: 張慶宏
Chang, Ching-Hong
論文名稱: 半導體式氣體感測器與數據減量演算法之研究
Study of Semiconductor-Based Gas Sensors and Algorithms for Data Reduction
指導教授: 劉文超
Liu, Wen-Chau
共同指導教授: 林坤緯
Lin, Kun-Wei
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 178
中文關鍵詞: 異質結構蕭特基二極體化學電阻式元件氣體感測器催化金屬奈米顆粒三氧化鎢二氧化鉿演算法一階微分演算法保型分段三次內插法
外文關鍵詞: Heterostructure structure, Schottky Diode, Chemiresistive (resistor)-type, Gas sensor, Catalytic metal, Nanoparticle, Pd, Pt, WO3, HfO2, algorithm, First order differential, Shape-preserving piecewise cubic interpolation
相關次數: 點閱:164下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研製一系列以三-五族半導體金屬氧化物為基礎之高性能化學電阻式氣體感測器,包含氮化鎵/氮化鋁鎵蕭特基二極體式與以三氧化鎢作為感測膜之化學電阻式之氣體感測器,此兩類感測器皆於元件表面以催化金屬奈米顆粒修飾之。此外,本研究之氮化鎵/氮化鋁鎵蕭特基二極體式器體感測器本身因氮化鎵/氮化鋁鎵介面具有高電子移動率的二維電子氣(2DEG),當引入待測氣體,蕭特基位能障變化時,可使電流大幅改變,是相當潛力的半導體式氣體感測元件。而本研究之n型三氧化鎢感測膜化學電阻式氣體感測器因為三氧化鎢材料具有高能障之特性(2.6 ~ 2.7 eV),因此當待測氣體引入時,空乏區寬度變化量較大,相對的電流就會明顯變化。此外因為傳統式溶液配製法所製備之催化奈米金屬顆粒較大,與之相比快速熱蒸鍍法(Rapid Thermal Evaporation, RTE)所製備之催化金屬奈米顆粒就小非常多,因此我們也使用快速熱蒸鍍法沉積催化金屬奈米顆粒於三氧化鎢感測薄膜表面。而如先前研究所知,較小顆粒之催化金屬顆粒有利於增加感測元件的有效比較面積,藉此提升感測性能與速度。另一方面因感測元件於感測時常常產生巨量冗餘資料,導致元件於物聯網應用時會降低傳輸速度並使硬體需求提高。為克服此問題本論文提出以一階微分與卡爾曼濾波減點演算法應用於本論文所提之元件,成功且有效濾除大量冗餘資料,並將減點後之數據以保型分段三次內插法還原以供後端特性分析使用。實驗結果顯示,補點後之數據與原始數據非常相似,故該方法可有效應用於氣體感測元件。此外本論文不僅探討各元件對於不同感測氣體之相關感測電性、偵測效能和動態表現外,更利用熱離子發射方程式描述感測器於不同待測氣體環境下之電壓-電流特性,藉由此公式,本論文在蕭特基二極體方面可求得蕭特基位障之變化、熱力分析,而在化學電阻式之半導體金屬氧化物感測器方面可分析得知其待測氣體於元件的表面覆蓋率、熱力分析與經驗公式等。藉此建立本論文所提感測元件之感測特性與響應時間。

    In this dissertation, a series of III-V nitride compound material-based and semiconductor metal-oxide-based chemical gas sensor of Schottky diode and chemiresistive (resistor) type are fabricated and studied. These materials consist of AlGaN/GaN-based Schotty diode and tungsten trioxide (WO3)-based chemiresistive (resisitor) type. Both are decorated on the surface of sensing area with nanoparticles of catalytic metal. In this dissertation, the high-density two-dimensional electron gas is easily formed near the interface of AlGaN/GaN heterostructure. It is known that a variation in the effective Schottky barrier will result in the gas sensing current change. Therefore, the magnitude of 2DEG is modulated by the various in the effective Schottky barrier height due to dipole layer variation. Based on this mechanism, the AlGaN/GaN-based gas sensor is very sensitive to gas concentration variation. In addition, the WO3-based chemiresistive (resistor)-type gas sensor has attracted considerable attention recently, for its relatively wide bandgap of 2.6 ~ 2.7 eV and high diffusion oxygen vacancy coefficient as well as its thermal and chemical stability. The wide bandgap will make the depletion region significantly decreased and thus leads to resistance variation on introducing the target gas. Moreover, the rapid thermal evaporation (RTE) has been employed to evaporate smaller-size Pt nanoparticles. Based on previous research, the catalytic ability and surface area/volume ratio (SA/V) usually affects sensing properties. Compared with grain size of Pt NPs from traditional drop-coating approach, the RTE approach has smaller grain size than drop-coating approach.
    On the other hand, gas sensors play a vital role in the Internet of Things (IoT) applications. Generally, sensors usually generate large amounts of data with a great deal of redundant data among them. During sensing work, the wireless transmission rate will be slowed down by these redundant data. To overcome this issue, the first order differential (FOD) and Kalman filter algorithm has been employed to filter and delete the redundant data. Thus, these processed data can be more smoothly transmitted to the data processing center. In addition, the shape-preserving piecewise cubic interpolation (SPPCI) algorithm is employed to recover these transferred data at the data processing center. After SPPCI approach processing, the recovery data are very close to original data. Processing the sensing data through these two algorithms can reduce the amount of data and improve the transmission efficiency. As a result, the SPPCI algorithm can effectively filter and delete redundant data, and the FOD algorithm can restore restored data and retain its sensing feature.
    In this dissertation, upon exposing different gas concentration, the detailed performances for each study device are completely studied, including characteristics of current-voltage curve, transient curve response, response (recovery) time. In addition, based on the thermionic emission model, the current-voltage characteristic and sensing behavior are analyzed for Schottky diode and chemiresistive (resistor)-type gas sensor under introduction of the target gas. Besides, the sensing characteristics of Schottky diode type gas sensors are calculated from Schottky barrier height variation, thermodynamic and explores the chemical sensing (resistance) type gas sensing behavior with the thermodynamics, and experience rule.

    Abstract Table Lists Figure Captions Chapter 1 Introduction 1.1. Literature Review 1 1.2. Standard Prior of Sensing Measurement 4 1.3. Thesis Organizations 4 Chapter 2 Study of a Pd/HfO2/GaOx/GaN Based Metal-Oxide-Semiconductor Schottky Diode Type Hydrogen Sensor 2.1. Introduction 7 2.2. Device Structure and Fabrication 8 2.2.1. Device Fabrication 9 2.2.2. Sensing Measurement 10 2.2.3. Characterization 10 2.3. Experimental Results and Discussion 11 2.3.1. Hydrogen Detection Mechanism 11 2.3.2. Electrical Properties 12 2.3.3. Hydrogen Sensing Performance 15 2.3.4. Relative Humidity Analysis 17 2.4. Equilibrium State of Hydrogen Adsorption 18 2.4.1. Thermodynamic Analysis 18 2.4.2. The Kinetic Analysis of Hydrogen Adsorption Behavior 21 2.5. Summary 23 Chapter 3 Investigation of a Platinum (Pt) Hybrid Structure/GaN-Based Schottky Diode Type Ammonia Gas Sensor 3.1. Introduction 25 3.2. Device Structure and Fabrication 28 3.2.1. Device Fabrication 28 3.2.2. Sensing Measurement 30 3.2.3. Characterization 30 3.3. Experimental Results and Discussion 31 3.3.1. Ammonia Detection Mechanism 31 3.3.2. Electrical Properties 32 3.3.3. Ammonia Sensing Performance 33 3.4. Equilibrium State of Ammonia Adsorption 36 3.4.1. Thermodynamic Analysis 36 3.5. Data Reduction with Kalman Algorithm 39 3.6. Summary 41 Chapter 4 Fabrication of an Ammonia Gas Sensor Based on a Tungsten Trioxide Thin Film Decorated with Platinum Nanoparticles 4.1. Introduction 42 4.2. Device Structure and Fabrication 44 4.2.1. Device Fabrication 44 4.2.2. Sensing Measurement 46 4.2.3. Characterization 46 4.3. Experimental Results and Discussion 47 4.3.1. Ammonia Detection Mechanism 47 4.3.2. Electrical Properties 50 4.3.3. Ammonia Sensing Performance 51 4.4. Equilibrium State of Ammonia Adsorption 55 4.4.1. Thermodynamic Analysis 55 4.5. Algorithm Application 57 4.5.1. First Order Differential Algorithm 58 4.5.2. Shape-Preserving Piecewise Cubic Interpolation Algorithm 59 4.6. Summary 61 Chapter 5 A Highly Sensitive Hydrogen Performance of a Pt NP/WO3 Thin Film Chemiresistive type Hydrogen Gas Sensor 5.1. Introduction 63 5.2. Device Structure and Fabrication 66 5.2.1. Device Fabrication 66 5.2.2. Sensing Measurement 67 5.2.3. Characterization 67 5.3. Experimental Results and Discussion 68 5.3.1. Hydrogen Detection Mechanism 68 5.3.2. Electrical Properties 71 5.3.3. Hydrogen Sensing Performance 71 5.4. Equilibrium State of Hydrogen Adsorption 73 5.4.1. Thermodynamic Analysis 73 5.5. Algorithm Application 75 5.5.1. First Order Differential Algorithm 76 5.5.2. Shape-Preserving Piecewise Cubic Interpolation Algorithm 77 5.6. Summary 80 Chapter 6 Conclusions and Prospects 6.1. Conclusion 82 6.2. Prospects 86 References 89 Tables and Figures 104 Publication Lists 174

    [1] K. Ashton, "That ‘internet of things’ thing," RFID journal, vol. 22, pp. 97-114, 2009.
    [2] B. Gates, N. Myhrvold, P. Rinearson, and D. Domonkos, "The road ahead," The road ahead, 1995.
    [3] Z.B. Celik, E. Fernandes, E. Pauley, G. Tan, and P. McDaniel, "Program analysis of commodity IoT applications for security and privacy: challenges and opportunities," ACM Comput. Surv., vol. 52, pp. Article 74, 2019.
    [4] G. Aloi, G. Caliciuri, G. Fortino, R. Gravina, P. Pace, W. Russo, and C. Savaglio, "Enabling IoT interoperability through opportunistic smartphone-based mobile gateways," J. Netw. Comput. Appl., vol. 81, pp. 74-84, 2017.
    [5] D. Bandyopadhyay, and J. Sen, “Internet of Things: Applications and Challenges in Technology and Standardization,” Wirel. Pers. Commun., vol. 58, pp. 49-69, 2011.
    [6] B.M. Lee, and J. Ouyang, "Intelligent healthcare service by using collaborations between IoT personal health devices," Int. J. Bio-Sci. Bio-Tech., vol. 6, pp. 155-164, 2014.
    [7] J. Ni, K. Zhang, X. Lin, and X.S. Shen, “Securing fog computing for internet of things applications: Challenges and solutions,” IEEE Commun. Sur.veys & Tutor., vol. 20 pp. 601-628, 2017.
    [8] M.T. Lazarescu, "Design of a wsn platform for long-term environmental monitoring for IoT applications," IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, pp. 45-54, 2013.
    [9] D. Wu, H. Shi, H. Wang, R. Wang, and H. Fang, "A feature-based learning system for Internet of Things applications," IEEE Inter. Things J., vol. 6, pp. 1928-1937, 2018.
    [10] F. Wu, J. Redouté, and M.R. Yuce, "WE-Safe: A self-powered wearable IoT sensor network for safety applications based on LoRa," IEEE Access, vol. 6, pp. 40846-40853, 2018.
    [12] P. Asghari, A.M. Rahmani, and H.H.S. Javadi, "Internet of Things applications: A systematic review," Comp. Net., vol. 148, pp. 241-261, 2019.
    [12] F. Wu, T. Wu, and R.M. Yuce, "An internet-of-things (IoT) network system for connected safety and health monitoring applications," Sensors, vol. 19, pp., 2018.
    [13] B. Johnston, M.C. Mayo, and A. Khare, "Hydrogen: the energy source for the 21st century," Technovation, vol. 25, pp. 569-585, 2005.
    [14] N. Yamazoe, "Toward innovations of gas sensor technology," Sens. Actuators B, Chem., vol. 108, pp. 2-14, 2005.
    [15] W. Peschka, "Hydrogen: The future cryofuel in internal combustion engines," Int. J. Hydrogen Energy, vol. 23, pp. 27-43, 1998.
    [16] L.M. Peter, "Photoelectrochemical water splitting. a status assessment," Electroanalysis, vol. 27, pp. 864-871, 2015.
    [17] X. Zou, and Y. Zhang, "Noble metal-free hydrogen evolution catalysts for water splitting," Chem. Soc. Rev., vol. 44, pp. 5148-5180, 2015.
    [18] P. Van Blarigan, and J.O. Keller, "A hydrogen fuelled internal combustion engine designed for single speed/power operation," Int. J. Hydrogen Energy, vol. 23, pp. 603-609, 1998.
    [19] J.S. Wright, W. Lim, B.P. Gila, S.J. Pearton, J.L. Johnson, A. Ural, and F. Ren, "Hydrogen sensing with Pt-functionalized GaN nanowires," Sens. Actuators B, Chem., vol. 140, pp. 196-199, 2009.
    [20] Y. Shimizu, N. Kuwano, T. Hyodo, and M. Egashira, "High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd," Sens. Actuators B, Chem., vol. 83, pp. 195-201, 2002.
    [21] T. Samerjai, N. Tamaekong, C. Liewhiran, A. Wisitsoraat, A. Tuantranont, and S. Phanichphant, "Selectivity towards H2 gas by flame-made Pt-loaded WO3 sensing films," Sens. Actuators B, Chem., vol. 157, pp. 290-297, 2011.
    [22] D.D. Nguyen, D.V. Dang, and D.C. Nguyen, "Hydrothermal synthesis and NH3 gas sensing property of WO3 nanorods at low temperature," Adv. Nat. Sci NanoSci., vol. 6, pp. 035006, 2015.
    [23] T. Travis, "Haber-Bosch process: exemplar of 20th century chemical industry," Chem. Ind. (London), vol., pp. 581-585, 1993.
    [24] H.M. Apsimon, B.M. Barker, and S. Kayin, "Modeling studies of the atmospheric release and transport of ammonia in anticyclonic episodes," Atmos. Environ., vol. 21, pp. 1939-1946, 1967.
    [25] S. Yamulki, R.M. Harrison, and K.W.T. Goulding, "Ammonia surface-exchange above an agricultural field in Southeast England," Atmos. Environ., vol. 30, pp. 109-118, 1996.
    [26] R.L. Knight, R.H. Kadlec, and H.M. Ohlendorf, "The use of treatment wetlands for petroleum industry effluents," Environ. Sci. Technol., vol. 33, pp. 973-980, 1999.
    [27] R.K. Gangopadhyay, and S.K. Das, "Ammonia leakage from refrigeration plant and the management practice," Process Saf. Prog., vol. 27, pp. 15-20, 2008.
    [28] L. A. Mashat, H.D. Tran, W. Wlodarski, R.B. Kaner, and K. Kalantar-zadeh, "Polypyrrole nanofiber surface acoustic wave gas sensors," Sens. Actuators B, Chem., vol. 134, pp. 826-831, 2008.
    [29] T.Y. Chen, H.I. Chen, Y.J. Liu, C.C. Huang, C.S. Hsu, C.F. Chang, and W.C. Liu, "Ammonia sensing properties of a Pt/AlGaN/GaN Schottky diode," IEEE Trans. Electron Devices, vol. 58, pp. 1541-1547, 2011.
    [30] M.E. Barsan, NIOSH pocket guide to chemical hazards, Cincinnati, OH2007.
    [31] C.f.D. Control, "NIOSH recommendations for occupational safety and health standards 1988," MMWR supplements, vol. 37, pp. 1, 1988.
    [32] A. Pearson, "Refrigeration with ammonia," Int. J. Refrig., vol. 31, pp. 545-551, 2008.
    [33] T.C. Chou, C.C. Chang, C. Lee, and W.C. Liu, "Ammonia sensing characteristics of a tungsten trioxide thin-film-based sensor," IEEE Trans. Electron Devices, vol. 66, pp. 696-701, 2019.
    [34] I.P. Liu, C.H. Chang, T.C. Chou, and K.W. Lin, "Ammonia sensing performance of a platinum nanoparticle-decorated tungsten trioxide gas sensor," Sens. Actuators B, Chem., vol. 291, pp. 148-154, 2019.
    [35] C. Lee, and W. Liu, "A high-performance Pd nanoparticle (NP)/WO3 thin-film-based hydrogen sensor," IEEE Electron Device Lett., vol. 40, pp. 1194-1197, 2019.
    [36] H.I. Chen, C.Y. Hsiao, W.C. Chen, C.H. Chang, T.C. Chou, I.P. Liu, K.W. Lin, and W.C. Liu, "Characteristics of a Pt/NiO thin film-based ammonia gas sensor," Sens. Actuators B, Chem., vol. 256, pp. 962-967, 2018.
    [37] J. Zhou, N.S. Xu, and Z.L. Wang, "Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures," Adv. Mat., vol. 18, pp. 2432-2435, 2006.
    [38] V.B. Raj, A.T. Nimal, Y. Parmar, M.U. Sharma, K. Sreenivas, and V. Gupta, "Cross-sensitivity and selectivity studies on ZnO surface acoustic wave ammonia sensor," Sens. Actuators B, Chem., vol. 147, pp. 517-524, 2010.
    [39] T.Y. Chen, H.I. Chen, C.S. Hsu, C.C. Huang, J.S. Wu, P.C. Chou, and W.C. Liu, "Characteristics of ZnO nanorods-based ammonia gas sensors with a cross-linked configuration," Sens. Actuators B, Chem., vol. 221, pp. 491-498, 2015.
    [40] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "AlGaN/GaN heterostructure based schottky diode sensors with ZnO nanorods for environmental ammonia monitoring applications," ECS J. Solid State Sci. Technol., vol. 7, pp. Q3020-Q3024, 2018.
    [41] S. J. Chang, W. Y. Weng, C. L. Hsu, and T. J. Hsueh, “High sensitivity of a ZnO nanowire-based ammonia gas sensor with Pt nanoparticles,” Nano Commun. Net., vol. 1, pp. 283–288, Dec. 2010.
    [42] D. Haridas, A. Chowdhuri, K. Sreenivas, and V. Gupta, "Effect of thickness of platinum catalyst clusters on response of SnO2 thin film sensor for LPG," Sens. Actuators B, Chem., vol. 153, pp. 89-95, 2011.
    [43] Y.D. Wang, X.H. Wu, Q. Su, Y.F. Li, and Z.L. Zhou, "Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials," Solid-State Electronics, vol. 45, pp. 347-350, 2001.
    [44] C. Liu, Q. Kuang, Z. Xie, and L. Zheng, "The effect of noble metal (Au, Pd and Pt) nanoparticles on the gas sensing performance of SnO2-based sensors: a case study on the {221} high-index faceted SnO2 octahedra," CrystEngComm, vol. 17, pp. 6308-6313, 2015.
    [45] Q. Qi, P.P. Wang, J. Zhao, L.L. Feng, L.J. Zhou, R.F. Xuan, Y.P. Liu, and G.D. Li, "SnO2 nanoparticle-coated In2O3 nanofibers with improved NH3 sensing properties," Sens. Actuators B, Chem., vol. 194, pp. 440-446, 2014.
    [46] X. Liu, N. Chen, B. Han, X. Xiao, G. Chen, I. Djerdj, and Y. Wang, "Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity," Nanoscale, vol. 7, pp. 14872-14880, 2015.
    [47] M. Shahabuddin, A. Sharma, J. Kumar, M. Tomar, A. Umar, and V. Gupta, "Metal clusters activated SnO2 thin film for low level detection of NH3 gas," Sens. Actuators B, Chem., vol. 194, pp. 410-418, 2014.
    [48] N. Van Toan, N. Viet Chien, N. Van Duy, H. Si Hong, H. Nguyen, N. Duc Hoa, and N. Van Hieu, "Fabrication of highly sensitive and selective H2 gas sensor based on SnO2 thin film sensitized with microsized Pd islands," J. Hazard. Mater., vol. 301, pp. 433-442, 2016.
    [49] I. Hayakawa, Y. Iwamoto, K. Kikuta, and S. Hirano, "Gas sensing properties of metal-organics derived Pt dispersed-TiO2 thin film fired in NH3," Sens. Actuators B, Chem., vol. 67, pp. 270-274, 2000.
    [[50] Y.K. Jun, H.S. Kim, J.H. Lee, and S.H. Hong, "High H2 sensing behavior of TiO2 films formed by thermal oxidation," Sens. Actuators B, Chem., vol. 107, pp. 264-270, 2005.
    [51] J. Moon, H.P. Hedman, M. Kemell, A. Tuominen, and R. Punkkinen, "Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate," Sens. Actuators B, Chem., vol. 222, pp. 190-197, 2016.
    [52] K. Anand, J. Kaur, R.C. Singh, and R. Thangaraj, "Preparation and characterization of Ag-doped In2O3 nanoparticles gas sensor," Chem. Phys. Lett., vol. 682, pp. 140-146, 2017.
    [53] A. Montazeri, and F. J. Sheini, "Enhanced ethanol gas-sensing performance of Pb-doped In2O3 nanostructures prepared by sonochemical method," Sens. Actuators B, Chem., vol. 242, pp. 778-791, 2017.
    [54] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, and C.j. Liu, "CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy," Applied Catalysis B: Environmental, vol. 218, pp. 488-497, 2017.
    [55] P.C. Chou, H.I. Chen, I.P. Liu, C.C. Chen, J.K. Liou, K.S. Hsu, and W.C. Liu, "Hydrogen sensing performance of a nickel oxide (NiO) thin film-based device," Int. J. Hydrogen Energy, vol. 40, pp. 729-734, 2015.
    [56] H.I. Chen, C.Y. Hsiao, W.C. Chen, C.C. Chang, I-P. Liu, T.C. Chou, and W.C. Liu, "Formaldehyde sensing characteristics of a NiO-based sensor decorated with Pd nanoparticles and a Pd thin film," IEEE Trans. Electron Devices, vol. 65, pp. 1956-1961, 2018.
    [57] H. Steinebach, S. Kannan, L. Rieth, and F. Solzbacher, "H2 gas sensor performance of NiO at high temperatures in gas mixtures," Sens. Actuators B, Chem., vol. 151, pp. 162-168, 2010.
    [58] G. Wang, Y. Ji, X. Huang, X. Yang, P.I. Gouma, and M. Dudley, "Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing," J. Phys. Chem. B, vol. 110, pp. 23777-23782, 2006.
    [59] M. Stankova, X. Vilanova, E. Llobet, J. Calderer, C. Bittencourt, J.J. Pireaux, and X. Correig, "Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors," Sens. Actuators B, Chem., vol. 105, pp. 271-277, 2005.
    [60] M. Penza, M.A. Tagliente, L. Mirenghi, C. Gerardi, C. Martucci, and G. Cassano, "Tungsten trioxide (WO3) sputtered thin films for a NOx gas sensor," Sens. Actuators B, Chem., vol. 50, pp. 9-18, 1998.
    [61] R. Ionescu, A. Hoel, C.G. Granqvist, E. Llobet, and P. Heszler, "Low-level detection of ethanol and H2S with temperature-modulated WO3 nanoparticle gas sensors," Sens. Actuators B, Chem., vol. 104, pp. 132-139, 2005.
    [62] W.H. Tao, and C.H. Tsai, "H2S sensing properties of noble metal doped WO3 thin film sensor fabricated by micromachining," Sens. Actuators B, Chem., vol. 81, pp. 237-247, 2002.
    [63] S.J. Ippolito, S. Kandasamy, K. Kalantar-zadeh, and W. Wlodarski, "Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts," Sens. Actuators B, Chem., vol. 108, pp. 154-158, 2005.
    [64] D.S. Lee, S.D. Han, J.S. Huh, and D.D. Lee, "Nitrogen oxides-sensing characteristics of WO3-based nanocrystalline thick film gas sensor," Sens. Actuators B, Chem., vol. 60, pp. 57-63, 1999.
    [65] J. Wang, E. Khoo, P.S. Lee, and J. Ma, "Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods," J. Phys. Chem. C, vol. 112, pp. 14306-14312, 2008.
    [66] V. Srivastava, and K. Jain, "Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films," Sens. Actuators B, Chem., vol. 133, pp. 46-52, 2008.
    [67] X.L. Li, T.J. Lou, X.M. Sun, and Y.D. Li, "Highly sensitive WO3 hollow-sphere gas sensors," Inorg. Chem., vol. 43, pp. 5442-5449, 2004.
    [68] S. Bai, K. Zhang, J. Sun, D. Zhang, R. Luo, D. Li, and C. Liu, "Polythiophene-WO3 hybrid architectures for low-temperature H2S detection," Sens. Actuators B, Chem., vol. 197, pp. 142-148, 2014.
    [69] I.M. Szilágyi, S. Saukko, J. Mizsei, A.L. Tóth, J. Madarász, and G. Pokol, "Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S," Solid State Sciences, vol. 12, pp. 1857-1860, 2010.
    [70] C. Zhang, A.F. Kanta, H. Yin, A. Boudiba, J. D'Haen, M.G. Olivier, and M. Debliquy, "H2 sensors based on WO3 thin films activated by platinum nanoparticles synthesized by electroless process," Int. J. Hydrogen Energy, vol. 38, pp. 2929-2935, 2013.
    [71] C.N. Xu, N. Miura, Y. Ishida, K. Matsuda, and N. Yamazoe, "Selective detection of NH3 over NO in combustion exhausts by using Au and MoO3 doubly promoted WO3 element," Sens. Actuators B, Chem., vol. 65, pp. 163-165, 2000.
    [72] Z. Li, M. Yang, J. Dai, G. Wang, C. Huang, J. Tang, W. Hu, H. Song, and P. Huang, "Optical fiber hydrogen sensor based on evaporated Pt/WO3 film," Sens. Actuators B, Chem., vol. 206, pp. 564-569, 2015.
    [73] C. Zhang, A. Boudiba, C. Navio, C. Bittencourt, M.G. Olivier, R. Snyders, and M. Debliquy, "Highly sensitive hydrogen sensors based on co-sputtered platinum-activated tungsten oxide films," Int. J. Hydrogen Energy, vol. 36, pp. 1107-1114, 2011.
    [74] A. Rothschild, and Y. Komem, "The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors," J. Appl. Phys., vol. 95, pp. 6374-6380, 2004.
    [75] C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements," Sens. Actuators B, Chem., vol. 3, pp. 147-155, 1991.
    [76] T.Y. Chen, H.I. Chen, Y.J. Liu, C.C. Huang, C.S. Hsu, C.F. Chang, and W.C. Liu, "Ammonia sensing characteristics of a Pt/AlGaN/GaN Schottky diode," Sens. Actuators B, Chem., vol. 155, pp. 347-350, 2011.
    [77] E. Llobet, G. Molas, P. Molinas, J. Calderer, X. Vilanova, J. Brezmes, J.E. Sueiras, and X. Correig, "Fabrication of highly selective tungsten oxide ammonia sensors," J. Electrochem. Soc., vol. 147, pp. 776-779, 2000.
    [78] K. Matsuo, N. Negoro, J. Kotani, T. Hashizume, and H. Hasegawa, "Pt Schottky diode gas sensors formed on GaN and AlGaN/GaN heterostructure," Appl. Surf. Sci., vol. 244, pp. 273-276, 2005.
    [79] F.K. Yam, and Z. Hassan, "Schottky diode based on porous GaN for hydrogen gas sensing application," Appl. Surf. Sci., vol. 253, pp. 9525-9528, 2007.
    [80] T.J. Fawcett, J.T. Wolan, A. Lloyd Spetz, M. Reyes, and S.E. Saddow, "Thermal detection mechanism of SiC based hydrogen resistive gas sensors," Appl. Phys. Lett., vol. 89, pp. 182102, 2006.
    [81] C.R. Henry, C. Chapon, and C. Duriez, "Precursor state in the chemisorption of CO on supported palladium clusters," J. Chem. Phys., vol. 95, pp. 700-705, 1991.
    [82] E.T. Yu, X.Z. Dang, P.M. Asbeck, S.S. Lau, and G.J. Sullivan, "Spontaneous and piezoelectric polarization effects in III–V nitride heterostructures," J. Vac. Sci. Technol., B, Microelectron. Nanometer Struct. Process. Meas. Phenom., vol. 17, pp. 1742-1749, 1999.
    [83] T. Lalinský, L. Rufer, G. Vanko, S. Mir, Š. Haščík, Ž. Mozolová, A. Vincze, and F. Uherek, "AlGaN/GaN heterostructure-based surface acoustic wave-structures for chemical sensors," Appl. Surf. Sci., vol. 255, pp. 712-714, 2008.
    [84] H.I. Chen, Y.C. Cheng, C.H. Chang, W.C. Chen, I.P. Liu, K.W. Lin, and W.C. Liu, "Hydrogen sensing performance of a Pd nanoparticle/Pd film/GaN-based diode," Sens. Actuators B, Chem., vol. 247, pp. 514-519, 2017.
    [85] T.H. Tsai, H.I. Chen, I.P. Liu, C.W. Hung, T.P. Chen, L.Y. Chen, Y.J. Liu, and W.C. Liu, "Investigation on a Pd-AlGaN/GaN Schottky diode-type hydrogen sensor with ultrahigh sensing responses," IEEE Trans. Electron Devices, vol. 55, pp. 3575-3581, 2008.
    [86] K.L. Cooke, Differential — Difference Equations, in: J.P. LaSalle, S. Lefschetz (Eds.), International symposium on nonlinear differential equations and nonlinear mechanics, Academic Press1963, pp. 155-171.
    [87] K.I. Ko, "On the computational complexity of ordinary differential equations," Inform. Contr., vol. 58, pp. 157-194, 1983.
    [88] M. Gupta, "Numerical methods and software (david kahaner, cleve moler, and stephen nash)," Siam Review - SIAM REV, vol. 33, pp., 1991.
    [89] F.N. Fritsch, and R.E. Carlson, "Monotone piecewise cubic interpolation," SIAM Journal on Numerical Analysis, vol. 17, pp. 238-246, 1980.
    [90] L. Yang, and Z. Huiyan, "Shape preserving piecewise cubic interpolation," Applied Mathematics, vol. 11, pp. 419-424, 1996.
    [91] C.H. Chang, K.W. Lin, H.H. Lu, R.C. Liu, and W.C. Liu, "Hydrogen sensing performance of a Pd/HfO2/GaOx/GaN based metal-oxide-semiconductor type Schottky diode," Int. J. Hydrogen Energy, vol. 43, pp. 19816-19824, 2018.
    [92] C.C. Chang, W.C. Chen, J.S. Niu, B.Y. Ke, S.Y. Cheng, K.C. Lin, and W.C. Liu, "Ammonia sensing characteristics of a platinum (Pt) hybrid structure/GaN-based Schottky diode," IEEE Trans. Electron Devices, vol. 67, pp. 296-303, 2020.
    [93] E. Hamuda, B. Mc Ginley, M. Glavin, and E. Jones, "Improved image processing-based crop detection using Kalman filtering and the Hungarian algorithm," Comput. Electron. Agric., vol. 148, pp. 37-44, 2018.
    [94] C.H. Chang, T.C. Chou, W.C. Chen, J.S. Niu, K.W. Lin, S.Y. Cheng, J.H. Tsai, and W.C. Liu., “Study of a WO3 thin film based hydrogen gas sensor decorated with platinum nanoparticles,” Sens. Actuators B: Chem. Vol. 317, pp. 128145-9, 2020.
    [95] C.C. Chang, T.C. Chou, W.C. Chen, J.S. Niu, K.C. Lin, S.Y. Cheng, and W.C. Liu, "A highly sensitive ammonia (NH3) Sensor Based on a Tungsten Trioxide (WO3) thin film decorated with evaporated platinum (Pt) nanoparticles," IEEE Trans. Electron Devices, vol. 67, pp. 1176-1182, 2020.
    [96] R.E. Bellman, and K.L. Cooke, "Differential-difference equations," RAND Corporation, pp. 27-96, 1963.
    [97] Y.H. Kim, S.J. Kim, Y.J. Kim, Y.S. Shim, S.Y. Kim, B.H. Hong, and H.W. Jang, "Self-activated transparent all-graphene gas sensor with endurance to humidity and mechanical bending," ACS nano, vol. 9, pp. 10453-10460, 2015.
    [98] J. Lee, J. Kim, J. Im, S. Lim, J. Kwon, S.M. Lee, and S. Moon, "MEMS-based NO2 gas sensor using ZnO nano-rods for low-power IoT application," J. Korean Phys. Soc., vol. 70, pp. 924-928, 2017.
    [99] T. Islam, S.C. Mukhopadhyay, and N.K. Suryadevara, "Smart sensors and internet of things: a postgraduate paper," IEEE Sens. J., vol. 17, pp. 577-584, 2016.
    [100] A. Kaniyoor, R.I. Jafri, T. Arockiadoss, and S. Ramaprabhu, "Nanostructured Pt decorated graphene and multi walled carbon nanotube based room temperature hydrogen gas sensor," Nanoscale, vol. 1, pp. 382-386, 2009.
    [101] J.R. Huang, W.C. Hsu, Y.J. Chen, T.B. Wang, K.W. Lin, H.I. Chen, and W.C. Liu, "Comparison of hydrogen sensing characteristics for Pd/GaN and Pd/Al0.3Ga0.7As Schottky diodes," Sens. Actuators B, Chem., vol. 117, pp. 151-158, 2006.
    [102] T. Hyodo, N. Nishida, Y. Shimizu, and M. Egashira, "Preparation and gas-sensing properties of thermally stable mesoporous SnO2," Sens. Actuators B, Chem., vol. 83, pp. 209-215, 2002.
    [103] H. Miyazaki, T. Hyodo, Y. Shimizu, and M. Egashira, "Hydrogen-sensing properties of anodically oxidized TiO2 film sensors: Effects of preparation and pretreatment conditions," Sens. Actuators B, Chem., vol. 108, pp. 467-472, 2005.
    [104] C.S. Rout, G. Kulkarni, and C. Rao, "Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides," J. Phys. D: Appl. Phys., vol. 40, pp. 2777, 2007.
    [105] H.Y. Liu, W.C. Hsu, C.S. Lee, B.Y. Chou, Y.B. Liao, and M.H. Chiang, "Investigation of temperature-dependent characteristics of AlGaN/GaN MOS-HEMT by using hydrogen peroxide oxidation technique," IEEE Trans. Electron Devices, vol. 61, pp. 2760-2766, 2014.
    [106] T.Y. Chen, H.I. Chen, C.C. Huang, C.S. Hsu, P.S. Chiu, P.C. Chou, R.C. Liu, and W.C. Liu, "Hydrogen-sensing characteristics of a Pd/GaN Schottky diode with a simple surface roughness approach," IEEE Trans. Electron Devices, vol. 58, pp. 4079-4086, 2011.
    [107] B. Luther, S. Wolter, and S.E. Mohney, "High temperature Pt Schottky diode gas sensors on n-type GaN," Sens. Actuators B, Chem., vol. 56, pp. 164-168, 1999.
    [108] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Pt-AlGaN/GaN hydrogen sensor with water-blocking PMMA layer," IEEE Electron Device Lett., vol. 38, pp. 657-660, 2017.
    [109] V. Kumar, V. Mishra, R. Dwivedi, and R. Das, "Effect of RF plasma on gridded gate Pt/SiO2/Si MOS sensor for detection of hydrogen," IEEE Sens. J., vol. 16, pp. 6205-6212, 2016.
    [110] Y. Liu, W. Tang, and P. Lai, "A comparative study of Hf and Ta incorporations in the dielectric of Pd-WO3-SiC Schottky-diode hydrogen sensor," Sens. Actuators B, Chem., vol. 259, pp. 725-729, 2018.
    [111] S. Sugiura, Y. Hayashi, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, "Fabrication of normally-off mode GaN and AlGaN/GaN MOSFETs with HfO2 gate insulator," Solid-state electronics, vol. 54, pp. 79-83, 2010.
    [112] T.H. Tsai, J.R. Huang, K.W. Lin, W.C. Hsu, H.I. Chen, and W.C. Liu, "Improved hydrogen sensing characteristics of a Pt/SiO2/GaN Schottky diode," Sens. Actuators B, Chem., vol. 129, pp. 292-302, 2008.
    [113] S. Sugiura, S. Kishimoto, T. Mizutani, M. Kuroda, T. Ueda, and T. Tanaka, "Normally-off AlGaN/GaN MOSHFETs with HfO2 gate oxide," physica status solidi c, vol. 5, pp. 1923-1925, 2008.
    [114] O. Seok, W. Ahn, M.K. Han, and M.W. Ha, "High on/off current ratio AlGaN/GaN MOS-HEMTs employing RF-sputtered HfO2 gate insulators," Semicond. Sci. Technol., vol. 28, pp. 025001, 2012.
    [115] J. Shi, L.F. Eastman, X. Xin, and M. Pophristic, "High performance AlGaN/GaN power switch with HfO2 insulation," Appl. Phys. Lett., vol. 95, pp. 042103, 2009.
    [116] C. Liu, E.F. Chor, and L.S. Tan, "Investigations of HfO2/AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors," Appl. Phys. Lett., vol. 88, pp. 173504, 2006.
    [117] H.I. Chen, K.C. Chuang, C.H. Chang, W.C. Chen, I.P. Liu, and W.C. Liu, "Hydrogen sensing characteristics of a Pd/AlGaOx/AlGaN-based Schottky diode," Sens. Actuators B, Chem., vol. 246, pp. 408-414, 2017.
    [118] C.C. Chen, H.I. Chen, I.-P. Liu, H.Y. Liu, P.C. Chou, J.K. Liou, and W.C. Liu, "Enhancement of hydrogen sensing performance of a GaN-based Schottky diode with a hydrogen peroxide surface treatment," Sens. Actuators B, Chem., vol. 211, pp. 303-309, 2015.
    [119] C.C. Chen, H.I. Chen, H.Y. Liu, P.C. Chou, J.K. Liou, and W.C. Liu, "On a GaN-based ion sensitive field-effect transistor (ISFET) with a hydrogen peroxide surface treatment," Sens. Actuators B, Chem., vol. 209, pp. 658-663, 2015.
    [120] H.Y. Liu, B.Y. Chou, W.C. Hsu, C.S. Lee, and C.S. Ho, "A simple gate-dielectric fabrication process for AlGaN/GaN metal–oxide–semiconductor high-electron-mobility transistors," IEEE Electron Device Lett., vol. 33, pp. 997-999, 2012.
    [121] H.Y. Liu, B.Y. Chou, W.C. Hsu, C.S. Lee, and C.S. Ho, "Novel oxide-passivated AlGaN/GaN HEMT by using hydrogen peroxide treatment," IEEE Trans. Electron Devices, vol. 58, pp. 4430-4433, 2011.
    [122] N. Newman, W.E. Spicer, T. Kendelewicz, and I. Lindau, "On the Fermi level pinning behavior of metal/III–V semiconductor interfaces," J. Vac. Sci. Technol. A, vol. 4, pp. 931-938, 1986.
    [123] K.W. Lin, “Investigation of hydrogen-sensing GaAs-based Schottky contact devices”, Inst. Microelectronics, Dept., E. E., NCKU, June 2003.
    [124] H.I. Chen, C.H. Chang, H.H. Lu, I.P. Liu, W.C. Chen, B.Y. Ke, and W.C. Liu, "Hydrogen sensing performance of a Pd/HfO2/GaN metal-oxide-semiconductor (MOS) Schottky diode," Sens. Actuators B, Chem., vol. 262, pp. 852-859, 2018.
    [125] T.H. Tsai, H.I. Chen, K.W. Lin, Y.W. Kuo, C.F. Chang, C.W. Hung, L.Y. Chen, T.P. Chen, Y.C. Liu, and W.C. Liu, "SiO2 passivation effect on the hydrogen adsorption performance of a Pd/AlGaN-based Schottky diode," Sens. Actuators B, Chem., vol. 136, pp. 338-343, 2009.
    [126] M. Reddeppa, B.G. Park, S.T. Lee, N.H. Hai, M.D. Kim, and J.E. Oh, "Improved Schottky behavior of GaN nanorods using hydrogen plasma treatment," Current Applied Physics, vol. 17, pp. 192-196, 2017.
    [127] R.T. Tung, "The physics and chemistry of the Schottky barrier height," Applied Physics Reviews, vol. 1, pp. 011304, 2014.
    [128] L.J. Brillson, Chapter Four - Surfaces and Interfaces of Zinc Oxide, in: B.G. Svensson, S.J. Pearton, C. Jagadish (Eds.), Semiconductors and Semimetals, Elsevier, pp. 105-157, 2013.
    [129] B.J. Skromme, Junctions and Barriers, in: K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Oxford, 2003, pp. 1-12.
    [130] M. Cole, D. Eckart, W. Han, R. Pfeffer, T. Monahan, F. Ren, C. Yuan, R. Stall, S. Pearton, and Y. Li, "Thermal stability of W ohmic contacts to n‐type GaN," J. Appl. Phys., vol. 80, pp. 278-281, 1996.
    [131] L. Petersson, H. Dannetun, S. Karlsson, and I. Lundström, "Surface reactions on Pd studied with a hydrogen sensitive MOS-structure and photoelectron spectroscopy," Phys. Scr., vol. 25, pp. 818, 1982.
    [132] J. Fogelberg, M. Eriksson, H. Dannetun, and L.G. Petersson, "Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen‐sensitive field‐effect devices: Observation of large hydrogen‐induced dipoles at the Pd‐SiO2 interface," J. Appl. Phys., vol. 78, pp. 988-996, 1995.
    [133] L.G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, "Hydrogen adsorption states at the external and internal palladium surfaces of a palladium‐silicon dioxide-silicon structure," J. Appl. Phys., vol. 58, pp. 404-413, 1985.
    [134] S.Y. Chiu, H.W. Huang, T.H. Huang, K.C. Liang, K.P. Liu, J.H. Tsai, and W.S. Lour, "Comprehensive study of Pd/GaN metal–semiconductor–metal hydrogen sensors with symmetrically bi-directional sensing performance," Sens. Actuators B, Chem., vol. 138, pp. 422-427, 2009.
    [135] C. Lo, C. Chang, B. Chu, S. Pearton, A. Dabiran, P. Chow, and F. Ren, "Effect of humidity on hydrogen sensitivity of Pt-gated AlGaN/GaN high electron mobility transistor based sensors," Appl. Phys. Lett., vol. 96, pp. 232106, 2010.
    [136] P.C. Chou, H.I. Chen, I.P. Liu, C.W. Hung, C.C. Chen, J.K. Liou, and W.C. Liu, "Study of an electroless plating (EP)-based Pt/AlGaN/GaN Schottky diode-type ammonia sensor," Sens. Actuators B, Chem., vol. 203, pp. 258-262, 2014.
    [137] C. Christofides, and A. Mandelis, "Solid‐state sensors for trace hydrogen gas detection," J. Appl. Phys., vol. 68, pp. R1-R30, 1990.
    [138] I. Lundstrom, M.S. Shivaraman, and C. Svensson, Hydrogen sensitive MOS structures, 1975 International Electron Devices Meeting, pp. 631-634, 1975
    [139] I. Lundström, and D. Söderberg, "Hydrogen sensitive mos-structures part 2: characterization," Sens. Act., vol. 2, pp. 105-138, 1981.
    [140] L.G. Petersson, H. Dannetun, J. Fogelberg, and I. Lundström, "Oxygen as promoter or poison in the catalytic dissociation of H2, C2H4, C2H2, and NH3 on Palladium," Appl. Surf. Sci., vol. 27, pp. 275-284, 1986.
    [141] B. Hellsing, B. Kasemo, and V.P. Zhdanov, "Kinetics of the hydrogen-oxygen reaction on platinum," J. Catal., vol. 132, pp. 210-228, 1991.
    [142] M. Johansson, I. Lundström, and L.G. Ekedahl, "Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environments," J. Appl. Phys., vol. 84, pp. 44-51, 1998.
    [143] H.I. Chen, Y.I. Chou, and C.K. Hsiung, "Comprehensive study of adsorption kinetics for hydrogen sensing with an electroless-plated Pd–InP Schottky diode," Sens. Actuators B, Chem., vol. 92, pp. 6-16, 2003.
    [144] N. Miura, G. Lu, and N. Yamazoe, "High-temperature potentiometric/amperometric NOx sensors combining stabilized zirconia with mixed-metal oxide electrode," Sens. Actuators B, Chem., vol. 52, pp. 169-178, 1998.
    [145] M. Yousuf, B. Kuliyev, B. Lalevic, and T.L. Poteat, "Pd-InP Schottky diode hydrogen sensors," Solid-State Electronics, vol. 25, pp. 753-758, 1982.
    [146] V. Battut, J.P. Blanc, E. Goumet, V. Soulière, and Y. Monteil, "NO2 sensor based on InP epitaxial thin layers," Thin Solid Films, vol. 348, pp. 266-272, 1999.
    [147] H. ApSimon, B. Barker, and S. Kayin, "Modelling studies of the atmospheric release and transport of ammonia in anticyclonic episodes," Atmos. Environ., vol. 28, pp. 665-678, 1994.
    [148] H. Zan, W. Tsai, Y. Lo, Y. Wu, and Y. Yang, "Pentacene-based organic thin film transistors for ammonia sensing," IEEE Sens. J., vol. 12, pp. 594-601, 2012.
    [149] S.G. Pawar, M.A. Chougule, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen, and V.B. Patil, "Room Temperature Ammonia Gas Sensor Based on Polyaniline-TiO2 Nanocomposite," IEEE Sens. J., vol. 11, pp. 3417-3423, 2011.
    [150] M.J. Fedoruk, R. Bronstein, and B.D. Kerger, "Ammonia exposure and hazard assessment for selected household cleaning product uses," J. Exposure Anal. Environ. Epidemiol., vol. 15, pp. 534-544, 2005.
    [151] S.K. Lee, D. Chang, and S.W. Kim, "Gas sensors based on carbon nanoflake/tin oxide composites for ammonia detection," J. Hazard. Mater., vol. 268, pp. 110-114, 2014.
    [152] C.S. Hsu, H.I. Chen, C.W. Lin, T.Y. Chen, C.C. Huang, P.C. Chou, and W.C. Liu, "Ammonia gas sensing performance of an Indium Tin Oxide (ITO) based device with an underlying Au-nanodot layer," J. Electrochem. Soc., vol. 160, pp. B17-B22, 2013.
    [153] P.C. Chou, H.I. Chen, I-P. Liu, C.C. Chen, J.C. Liou, K.S. Hsu, and W.C. Liu, "On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor," IEEE Sens. J., vol. 15, pp. 3711-3715, 2015.
    [154] B.S. Kang, H.T. Wang, F. Ren, and S.J. Pearton, "Electrical detection of biomaterials using AlGaN/GaN high electron mobility transistors," J. Appl. Phys., vol. 104, pp. 031101, 2008.
    [155] I-P. Liu, C.C. Chang, Y.M. Huang, and K.W. Lin, "On the Ammonia Sensing Performance and Transmission Approach of a Platinum/Nickel Oxide/GaN-Based Metal-Oxide-Semiconductor Diode," IEEE J. Electron Devices Soc., vol. 7, pp. 476-482, 2019.
    [156] L.M. Lechuga, A. Calle, D. Golmayo, and F. Briones, "The ammonia sensitivity of Pt/GaAs Schottky barrier diodes," J. Appl. Phys., vol. 70, pp. 3348-3354, 1991.
    [157] A. Spetz, M. Armgarth, and I. Lundström, "Hydrogen and ammonia response of metal-silicon dioxide-silicon structures with thin platinum gates," J. Appl. Phys., vol. 64, pp. 1274-1283, 1988.
    [158] A. Kolmakov, D.O. Klenov, Y. Lilach, S. Stemmer, and M. Moskovits, "Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles," Nano Lett., vol. 5, pp. 667-673, 2005.
    [159] B.Y. Ke, and W.C. Liu, "Enhancement of hydrogen sensing performance of a Pd nanoparticle/Pd Film/GaOx/GaN-based metal–oxide–semiconductor diode," IEEE Trans. Electron Devices, vol. 65, pp. 4577-4584, 2018.
    [160] H.Y. Chen, and W.C. Liu, "Hydrogen sensing characteristics of a metal–oxide–semiconductor diode with bimetallic catalysts and a GaOx dielectric," IEEE Trans. Electron Devices, vol. 66, pp. 3144-3150, 2019.
    [161] R. Ghosh, A.K. Nayak, S. Santra, D. Pradhan, and P.K. Guha, "Enhanced ammonia sensing at room temperature with reduced graphene oxide/tin oxide hybrid films," RSC Advances, vol. 5, pp. 50165-50173, 2015.
    [162] P.L. Houtekamer, and F. Zhang, "Review of the Ensemble Kalman Filter for Atmospheric Data Assimilation," Monthly Weather Review, vol. 144, pp. 4489-4532, 2016.
    [163] Y. Wang, J. Liu, X. Cui, Y. Gao, J. Ma, Y. Sun, P. Sun, F. Liu, X. Liang, T. Zhang, and G. Lu, "NH3 gas sensing performance enhanced by Pt-loaded on mesoporous WO3," Sens. Actuators B, Chem., vol. 238, pp. 473-481, 2017.
    [164] H.I. Chen, C.Y. Chi, W.C. Chen, I.P. Liu, C.H. Chang, T.C. Chou, and W.C. Liu, "Ammonia sensing characteristic of a Pt nanoparticle/aluminum-doped zinc oxide sensor," Sens. Actuators B, Chem., vol. 267, pp. 145-154, 2018.
    [165] X. Wang, N. Miura, and N. Yamazoe, "Study of WO3 -based sensing materials for NH3 and NO detection," Sens. Actuators B, Chem., vol. 66, pp. 74-76, 2000.
    [166] J. Zhou, L. Gong, S.Z. Deng, J. Chen, J.C. She, N.S. Xu, R. Yang, and Z.L. Wang, "Growth and field-emission property of tungsten oxide nanotip arrays," Appl. Phys. Lett., vol. 87, pp. 223108, 2005.
    [167] M. Qamar, M.A. Gondal, and Z.H. Yamani, "Synthesis of highly active nanocrystalline WO3 and its application in laser-induced photocatalytic removal of a dye from water," Catal. Commun., vol. 10, pp. 1980-1984, 2009.
    [168] S.H. Baeck, K.S. Choi, T.F. Jaramillo, G.D. Stucky, and E.W. McFarland, "Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films," Adv. Mat., vol. 15, pp. 1269-1273, 2003.
    [169] K. Kanda, and T. Maekawa, "Development of a WO3 thick-film-based sensor for the detection of VOC," Sens. Actuators B, Chem., vol. 108, pp. 97-101, 2005.
    [170] C.S. Rout, M. Hegde, A. Govindaraj, and C.N.R. Rao, "Ammonia sensors based on metal oxide nanostructures," Nanotechnology, vol. 18, pp. 205504, 2007.
    [171] S. Khoobiar, "Particle to particle migration of hydrogen atoms on platinum-alumina catalysts from particle to neighboring particles," J. Phys. Chem., vol. 68, pp. 411-412, 1964.
    [172] M. Boudart, M.A. Vannice, and J.E. Benson, “Adlineation, Portholes and Spillover,” Zeitschrift für Physikalische Chemie, vol. 64, pp. 171-177, 1969.
    [173] M. Bowker, ‘Seeing’ the active site in catalysis. STM and molecular beam studies of surface reactions, in: J.W. Hightower, W. Nicholas Delgass, E. Iglesia, A.T. Bell (Eds.), Studies in Surface Science and Catalysis, Elsevier1996, pp. 287-295.
    [174] P. Van Tong, N.D. Hoa, N. Van Duy, D.T.T. Le, and N. Van Hieu, "Enhancement of gas-sensing characteristics of hydrothermally synthesized WO3 nanorods by surface decoration with Pd nanoparticles," Sens. Actuators B, Chem., vol. 223, pp. 453-460, 2016.
    [175] C. Balázsi, L. Wang, E.O. Zayim, I.M. Szilágyi, K. Sedlacková, J. Pfeifer, A.L. Tóth, and P.I. Gouma, "Nanosize hexagonal tungsten oxide for gas sensing applications," J. Eur. Ceram. Soc., vol. 28, pp. 913-917, 2008.
    [176] I.-D. Kim, A. Rothschild, T. Hyodo, and H.L. Tuller, "Microsphere Templating as Means of Enhancing Surface Activity and Gas Sensitivity of CaCu3Ti4O12 thin films," Nano Lett., vol. 6, pp. 193-198, 2006.
    [177] S. Das, S. Majumdar, R. Kumar, S. Ghosh, and D. Biswas, "Thermodynamic analysis of acetone sensing in Pd/AlGaN/GaN heterostructure Schottky diodes at low temperatures," Scripta Mater., vol. 113, pp. 39-42, 2016.
    [178] S.K. Arya, S. Krishnan, H. Silva, S. Jean, and S. Bhansali, "Advances in materials for room temperature hydrogen sensors," Analyst, vol. 137, pp. 2743-2756, 2012.
    [179] X. Xing, Y. Li, D. Deng, N. Chen, X. Liu, X. Xiao, and Y. Wang, "Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application," RSC Advances, vol. 6, pp. 101304-101312, 2016.
    [180] G. Behzadi pour, and L. Fekri aval, "Highly sensitive work function hydrogen gas sensor based on Pd NPs/SiO2/Si structure at room temperature," Results in Physics, vol. 7, pp. 1993-1999, 2017.
    [181] M. Penza, C. Martucci, and G. Cassano, "NOx gas sensing characteristics of WO3 thin films activated by noble metals (Pd, Pt, Au) layers," Sens. Actuators B, Chem., vol. 50, pp. 52-59, 1998.
    [182] F. Amano, D. Li, and B. Ohtani, "Fabrication and photoelectrochemical property of tungsten(vi) oxide films with a flake-wall structure," Chem. Commun., vol. 46, pp. 2769-2771, 2010.
    [183] I. Sta, M. Jlassi, M. Kandyla, M. Hajji, P. Koralli, F. Krout, M. Kompitsas, and H. Ezzaouia, "Surface functionalization of sol–gel grown NiO thin films with palladium nanoparticles for hydrogen sensing," Int. J. Hydrogen Energy, vol. 41, pp. 3291-3298, 2016.
    [184] Y. Kumaresan, H. Kim, Y. Jeong, Y. Pak, S. Cho, R. Lee, N. Lim, and G.Y. Jung, "Ultra-high sensitivity to low hydrogen gas concentration with Pd-decorated IGZO film," IEEE Electron Device Lett., vol. 38, pp. 1735-1738, 2017.
    [185] K. Hassan, A.S.M. Iftekhar Uddin, and G.S. Chung, "Fast-response hydrogen sensors based on discrete Pt/Pd bimetallic ultra-thin films," Sens. Actuators B, Chem., vol. 234, pp. 435-445, 2016.
    [186] J. Hong, S. Lee, J. Seo, S. Pyo, J. Kim, and T. Lee, "A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid," ACS Appl. Mat. Inter., vol. 7, pp. 3554-3561, 2015.
    [187] S. Jung, K.H. Baik, F. Ren, S.J. Pearton, and S. Jang, "Temperature and humidity dependence of response of PMGI-encapsulated Pt-AlGaN/GaN diodes for hydrogen sensing," IEEE Sens. J., vol. 17, pp. 5817-5822, 2017.
    [188] O.Z. Gall, X. Zhong, D.S. Schulman, M. Kang, A. Razavieh, and T.S. Mayer, "Titanium dioxide nanowire sensor array integration on CMOS platform using deterministic assembly," Nanotechnology, vol. 28, pp. 265501, 2017.
    [189] C.S. Prajapati, R. Soman, S.B. Rudraswamy, M. Nayak, and N. Bhat, "Single Chip Gas Sensor Array for Air Quality Monitoring," J. Microelectromechanical Syst., vol. 26, pp. 433-439, 2017.
    [190] A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov, and A. Sinitskii, "Highly selective gas sensor arrays based on thermally reduced graphene oxide," Nanoscale, vol. 5, pp. 5426-5434, 2013.
    [191] Y. Goldberg, "Neural network methods for natural language processing," Synthesis Lectures on Human Language Technologies, vol. 10, pp. 1-309, 2017.
    [192] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F.E. Alsaadi, "A survey of deep neural network architectures and their applications," Neurocomputing, vol. 234, pp. 11-26, 2017.
    [193] J. Sarangapani, Neural network control of nonlinear discrete-time systems: CRC press; 2018.

    下載圖示 校內:2025-07-31公開
    校外:2025-07-31公開
    QR CODE