簡易檢索 / 詳目顯示

研究生: 蘇聖淮
Su, Sheng-Huai
論文名稱: 具焊接應用之可列印熱劑膠研製
Development of Printable Thermite Paste for Welding Applications
指導教授: 洪嘉宏
Hung, Chia-Hung
吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 127
中文關鍵詞: 熱劑反應熱劑膠燃料添加劑功能性材料3D 列印材料
外文關鍵詞: Thermite Reaction, Thermite Paste, Fuel Additives, Functional Materials, 3- D Printing Materials
相關次數: 點閱:47下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究透過添加Hydroxypropyl methylcellulose(HPMC)、Polyethyleneimine(PEI)、Ammonium polyacrylate(PAAM)、鹽酸(HCl)及乙醇等溶劑,賦予鋁/氧化鐵熱劑黏稠性。我們測量了儲能模量(storage modulus, G')與損耗模量(loss modulus, G''),當二者出現交點時,代表熱劑成功凝膠化,可被塑造成所需結構,並控制黏度在適當範圍,未來更可應用於高精密度3D列印。
    製程首先分別製備HPMC水溶液及PAAM/PEI水溶液,後者添加適量HCl將其中和,避免其鹼性傷害鋁外殼。透過實驗,我們找到最適鋁/氧化鐵比例,利用直接混合法將各組分均勻混合,再添加溶劑,並以丁烷火炬點燃,引發自持性燃燒反應(self-sustained combustion)。
    我們將此熱劑膠應用於黃銅箔的焊接,透過調控鋁/氧化鐵及溶劑添加比例,使熱劑釋放的熱量足以熔融黃銅箔間的焊料,形成堅固接頭。進一步的顯微硬度及荷重強度測試顯示,焊接後黃銅接頭的顯微硬度明顯提升;而荷重強度則隨著熱劑膠用量增加而提高,因為更多熱劑能釋放更多熱能,使焊料熔化程度增加,與黃銅箔接觸面積擴大所致。
    本研究成功開發出可被塑造、黏度可控的鋁/氧化鐵熱劑膠,並將其應用於金屬焊接,展現出優異的接合強度與硬度,具有廣泛的應用潛力。未來我們將持續優化材料配方及製程,期許能進一步提升熱劑性能,開拓更多應用領域。

    In this study, we imparted viscosity to the aluminum/iron oxide thermite by adding solvents such as hydroxypropyl methylcellulose (HPMC), polyethyleneimine (PEI), ammonium polyacrylate (PAAM), hydrochloric acid (HCl), and ethanol. We measured the storage modulus (G') and loss modulus (G''), and when the two intersected, it indicated successful gelation of the thermite, allowing it to be molded into the desired structure and maintaining the viscosity within an appropriate range, potentially enabling future applications in high-precision 3D printing.
    The process involved preparing separate HPMC, PAAM and PEI aqueous solution, with the latter being neutralized by adding an appropriate amount of HCl to prevent its alkalinity from damaging the aluminum shell. Through experimentation, we determined the optimal aluminum/iron oxide ratio, utilized direct mixing to uniformly blend the components, added solvents, and ignited the mixture with a butane torch to initiate self-sustained combustion.
    We applied this thermite paste to the welding of brass foils, adjusting the aluminum/iron oxide and solvent addition ratios to ensure that the heat released by the thermite was sufficient to melt the solder between the brass foils, forming a robust joint. Further microhardness and load strength tests revealed a significant increase in the microhardness of the brass joint after welding. Additionally, the load strength increased with increasing thermite paste quantity, as more thermite released more heat, enhancing the degree of solder melting and increasing the contact area with the brass foils.
    This study successfully developed a moldable and viscosity-controllable aluminum/iron oxide thermite paste, which was applied to metal welding, demonstrating exceptional joint strength and hardness, and possessing broad application potential. In the future, we will continue to optimize the material formulation and process to further enhance the thermite performance and explore additional application areas.

    摘要i 致謝vi 目錄vii 表目錄ix 圖目錄x 縮寫列表1 符號列表3 第一章、緒論4 1-1研究背景與動機4 1-2文獻回顧5 熱劑的特性及其製造方法5 熱劑的應用層面6 凝膠化的熱劑及其應用7 1-3研究目的11 1-4本文架構12 第二章、實驗原理與設備13 2-1實驗儀器與原理13 掃描式電子顯微鏡與原理13 Vision Research Miro 310 Lab彩色高速攝影機16 同步熱分析儀17 流變儀24 2-2合成材料30 奈/微米鋁粉30 氧化鐵粉33 羥丙基甲基纖維素(HPMC)34 聚乙烯亞胺(PEI)35 聚丙烯酸銨(PAAM)35 2-3合成方法36 溶質前處理36 溶劑前處理38 溶質溶劑混合及熱劑膠後處理40 2-4燃燒觀察設備43 第三章、鋁/氧化鐵熱劑膠製備45 3-1熱劑膠的形貌45 3-2熱劑膠乾燥52 3-3溶劑添加參數對於自持性燃燒影響53 3-4溶質添加參數對於自持性燃燒影響58 3-5熱劑膠的流變性質61 3-6熱劑膠可列印性展示66 3-7小結71 第四章、鋁/氧化鐵熱劑膠應用在黃銅箔焊接74 4-1黃銅箔焊接之配置74 4-2黃銅箔焊接之顯微硬度分析80 4-3不同熱劑膠多寡的荷重強度82 4-4混合焊料之熱劑焊接87 4-5小結95 第五章、結論與未來展望97 5-1結論97 5-2未來展望98 參考文獻100 附錄A、鋁/氧化銅熱劑膠初探106 附錄B、不同厚度但固定長寬之鋁/氧化鐵熱劑膠焊接嘗試111

    [1] L.L. Wang, Z.A. Munir and Y.M. Maximov (1993), Thermite Reactions: Their Utilization in the Synthesis and Processing of Materials, Journal of Materials Science 28, 3693-3708.
    [2] K.M. de Souza, M.J.S. de Lemos and E.Y. Kawachi (2021), Thermodynamics of Thermite Reactions for a New Thermal Plug and Abandonment Process, Continuum Mechanics and Thermodynamics 34(1), 259-271.
    [3] K.M. de Souza and M.J.S. de Lemos (2021), Detailed Numerical Modeling and Simulation of Fe2O3−Al Thermite Reaction, Propellants, Explosives, Pyrotechnics 46(5), 806-824.
    [4] Y.W. Li, W.F. Zou, B.Y. Lee, A. Babkin nad Y.L. Chang (2020), Research Pogress of Aluminum Alloy Welding Technology, Journal of Advanced Manufacturing Technology 109, 1207-1218.
    [5] E. Karayel and Y. Bozkurt (2020), Additive Manufacturing Method and Different Welding Applications, Journal of Materials Research and Technology 9(5), 11424-11438.
    [6] Y.Z. Jia, N. Huang, J.L. Zhang, J. Xiao, S.J. Chen and W.H. Huang (2023), Current Research Status and Prospect of Metal Transfer Process Control Methods in Gas Metal Arc Welding, Journall of Advanced Manufacturing Technology 128, 2797-2811.
    [7] P. Xue, Y. Zou, P. He, Y.Y. Pei, H.W. Sun, C.L. Ma amd J.Y. Luo (2019), Development of Low Silver AgCuZnSn Filler Metal for Cu/steel Dissimilar Metal Joining, Metals 9(2), 198.
    [8] X.Q. Yu, D. Fan, J.K. Huang, C.L. Li and U.T. Kang (2019), Arc-Assisted Laser Welding Brazing of Aluminum to Steel, Metals 9(4), 397.
    [9] C. Favi, F. Campi, M. Germani and M. Mandolini (2019), A Data Framework for Environmental Assessment of Metal Arc Welding Processes and Welded Structures During the Design Phase, Journal of Advanced Manufacturing Technology 105, 967-993.
    [10] X.Y. Yuan, C.B. Zhan, H.B. Jin and K.X. Chen (2010), Novel Method of Thermite Welding, Science and Technology of Welding and Joining 15(1), 54-58.
    [11] K. Masubuchi and A.H. Anderson, Underwater Application Of Exothermic Welding, Offshore Technology Conference, 1973.
    [12] R.G. Kewalramani, I. Riehl, J. Hantusch and T. Fieback (2023). Numerical Investigation of the Cooling Stage During Aluminothermic Welding of Rails: Rapid Welding Process without Preheating, Thermal Science and Engineering Progress 37, 101610.
    [13] K.E. Neely, K.C. Galloway and A.M. Strauss (2019), Fast-Impulse Nanothermite Solid-Propellant Miniaturized Thrusters, Journal of Propulsion and Power 29(6), 1400-1409.
    [14] K.E. Neely, Additively Manufactured Thermite-Based Energetics : Characterization and Applications, Doctoral Dissertations, Graduate School of Vanderbilt University, United States of America, 2020.
    [15] P. Liu, X.Y. Li, L. Cheng, X.Q. Zhu, Y.C. Li and D.M. Song (2018). Preparation and Characterization of n-Al/FeF3 Nanothermite, Chemical Engineering Journal 331, 850-855.
    [16] S.J. Apperson, A.V. Bezmelnitsyn, R. Thiruvengadathan, K. Gangopadhyay, S. Gangopadhyay, W.A. Balas, P.E. Anderson and S.M. Nicolich (2009), Characterization of Nanothermite Material for Solid-Fuel Microthruster Applications, Journal of Propulsion and Power 25(5), 1086-1091.
    [17] H.Q. Nie, L.P. Tan, S. Pisharath and H.H. Hng. (2021). Nanothermite Composites with a Novel Cast Curable Fluoropolymer, Chemical Engineering Journal 414, 128786.
    [18] Z.X. Yi, Q. Ang, N.R. Li, C.M. Shan, Y. Li, L. Zhang and S.G. Zhu (2018), Sulfate-Based Nanothermite: a Green Substitute of Primary Explosive Containing Lead, ACS Sustainable Chemistry & Engineering 6(7), 8584-8590.
    [19] K.J. Kim, M.H. Cho and S.H. Kim (2018), Effect of Aluminum Micro- and Nanoparticles on Ignition and Combustion Properties of Energetic Composites for Interfacial Bonding of Metallic Substrates, Combustion and Flame 197, 319-327.
    [20] S. Kabra, S. Gharde, P.M. Gore, S. Jain, V.H. Khire and B. Kandasubramanian (2020), Recent Trends in Nanothermites: Fabrication, Characteristics and Applications, Nano Express 1(3), 032001.
    [21] S. Bekhouche, D. Trache, A. Abdelaziz, A.F. Tarchoun, S. Chelouche, A. Boudjellal and A. Mezroua (2023), Preparation and Characterization of MgAl-CuO Ternary Nanothermite System by Arrested Reactive Milling and Its Effect on the Thermocatalytic Decomposition of Cellulose Nitrate, Chemical Engineering Journal 453(1), 139845.
    [22] T. Ward, W. Chen, M. Schoenitz, E. Dreizin and R. Dave, Nano-Composite Energetic Powders Prepared by Arrested Reactive Milling, AIAA Aerospace Sciences Meeting and Exhibit, United States of America, 2005-136, 2005.
    [23] M.J. Abere, M.T. Beason, R.V. Reeves, M.A. Rodriguez, P.G. Kotula, C.E. Sobczak, S.F. Son, C.D. Yarrington and D.P. Adams (2022), The Growth and Nanothermite Reaction of 2Al/3NiO Multilayer Thin Films, Journal of Applied Physics 132(3).
    [24] J. Dai, C.G. Wang, Y.T. Wang, W. Xu, J.B. Xu, Y. Shen, W. Zhang, Y.H. Ye and R.Q. Shen (2020), From Nanoparticles to On-Chip 3D Nanothermite: Electrospray Deposition of Reactive Al/CuO@ NC onto Semiconductor Bridge and Its Application for Rapid Ignition, Nanotechnology 31(19), 195712.
    [25] M. Polis, A. Stolarczyk, K. Glosz and T. Jarosz (2022), Quo Vadis, Nanothermite? A Review of Recent Progress, Materials 15(9), 3215.
    [26] Y.T. Wang, X.T. Zhang, J.B. Xu, Y. Shen, C.A. Wang, F.W. Li, Z.H. Zhang, J. Chen, Y.H. Ye and R.Q. Shen (2021), Fabrication and Characterization of Al–CuO Nanocomposites Prepared by Sol-Gel Method, Defence Technology 17(4), 1307-1312.
    [27] T.M. Tillotson, A.E. Gash, R.L. Simpson, J.H. Satcher Jr. and J.F. Poco (2001), Nanostructured Energetic Materials Using Sol–Gel Methodologies, Journal of Non-Crystalline Solids 285(1-3), 338-345.
    [28] H.B. Zhang, H.T. Wu, P. Xu, Z.D. Li, W.Y. Zhang, H.X. Huang, Q. Zhou, X.G. Yue, J.K. Bao and X.M. Li (2020), Electrophoretic Deposition of Superhydrophobic Al/Fe2O3 Nanothermite with Long–Term Storage Stability, International Journal of Electrochemical Science 15(6), 5133-5143.
    [29] W.L. Hsu and M.H. Wu, Al/CuO Nanothermites Deposited on Copper Meshes and Their Combustion Characteristics, Master Thesis, National Cheng Kung University, Taiwan, 2024.
    [30] N. Wang, Y.B. Hu, X. Ke, L. Xiao, X. Zhou, S.S. Peng, G.Z. Hao and W. Jiang (2020), Enhanced-Absorption Template Method for Preparation of Double-Shell NiO Hollow Nanospheres with Controllable Particle Size for Nanothermite Application, Chemical Engineering Journal 379, 122330.
    [31] S. Apperson, R.V. Shende, S. Subramanian, D. Tappmeyer, S. Gangopadhyay, Z. Chen, K. Gangopadhyay, P. Redner, S. Nicholich and D. Kapoor (2007), Generation of Fast Propagating Combustion and Shock Waves with Copper Oxide/Aluminum Nanothermite Composites, Applied Physics Letters 91(24).
    [32] M.M. Durban, A.M. Golobic, E.V. Bukovsky, A.E. Gash and K.T. Sullivan (2018), Development and Characterization of 3D Printable Thermite Component Materials, Advanced Materials Technologies 3(12), 1800120.
    [33] N.V. Muravyev, K.A. Monogarov, U. Schaller, I.V. Fomenkov and A.N. Pivkina (2019), Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications, Propellants, Explosives, Pyrotechnics 44(8), 941-969.
    [34] A.M. Golobic, M.D. Durban, S.E. Fisher, M.D. Grapes, J.M. Ortega, C.M. Spadaccini, E.B. Duoss, A.E. Gash and K.T. Sullivan (2019), Active Mixing of Reactive Materials for 3D Printing, Advanced Engineering Materials 21(8), 1900147.
    [35] D.A. Reese, D.M. Wright and S.F. Son (2013), CuO/Al Thermites for Solid Rocket Motor Ignition, Journal of Propulsion and Power 29(5), 1194-1199.
    [36] A. Kasztankiewicz, K. Gańczyk-Specjalska, A. Zygmunt, K. Cieślak, B. Zakościelny and T. Gołofit (2018), Application and Properties of Aluminum in Rocket Propellants and Pyrotechnics, Journal of Elementology 23(1), 321-331.
    [37] J.K. Deng, G.P. Li, L.H. Shen and Y.J. Luo (2016), Application of Al/B/Fe2O3Nano Thermite in Composite Solid Propellant, Bulletin of Chemical Reaction Engineering & Catalysis 11(1), 109-114.
    [38] X. Lv, Y. Gao, Y.S Cui, C. Wang, G.C. Zhang, F. Wang, P.J. Liu and W. Ao (2023), Study of Ignition and Combustion Characteristics of Kerosene-Based Nanofluid Fuel Containing n-Al/CuO Thermite, Fuel 331(1), 125778.
    [39] M. Akiyama, Y. Saito, K. Nishii, H. Koizumi and K. Komurasaki (2019), Application of an Al/Fe2O3 Thermite Reaction to an Igniter of a Hybrid Rocket.
    [40] G.E. Lu, W.P. Chang, J.Y. Jiang and S.G. Du, Study on the Energy Density of Gunpowder Heat Source, International Conference on Materials for Renewable Energy & Environment, IEEE (2011), 1185-1187.
    [41] X.B. Jia, J. Y. Jiang, G.E. Lu, W.P. Chang, H.N. Jia and T. Zhang (2013), Study on the Combustion Mechanism and Models of Gunpowder Composite Welding Rod, Advanced Materials Research 753, 339-342.
    [42] W.Q. Wang, Y.C. Zhang, L. Zhang and S.M. Xu (2020), Cleaner Recycling of Cathode Material by In-Situ Thermite Reduction, Journal of Cleaner Production 249, 119340.
    [43] S.F. Son, B.W. Assay, T.J. Foley, R.A. Yetter, M.H. Wu and G.A. Risha (2007), Combustion of Nanoscale Al/MoO3 in Microchannels, Propulsion and Power 23(4), 714-721.
    [44] A. Chen, B. Wu, X.D. Li, J.P. Shen, L. Tian, Y. Zhou and C.H. Pei (2021), Pushing the Limits of Energy Performance in Micron-Sized Thermite: Core–Shell Assembled Liquid Metal-Modified Al@Fe2O3 Thermites, ACS Applied Energy Materials 4(10), 11777-11786.
    [45] Y. Li, J. Dang, Y.Q. Ma and H.X. Ma (2023), Hematite: A Good Catalyst for the Thermal Decomposition of Energetic Materials and the Application in Nano-Thermite, Molecules 28(5), 2035.
    [46] N.N. Zhao, C.C. He, J.B. Liu, H.J. Gong, T. An, H.X. Xu, F.Q. Hu, H.X. Ma and J.Z. Zhang (2014), Dependence of Catalytic Properties of Al/Fe2O3 Thermites on Morphology of Fe2O3 Particles in Combustion Reactions, Journal of Solid State Chemistry 219, 67-73.
    [47] S. Singh, G. Singh, N. Kulkarni, V.L. Mathe and S.V. Bhoraskar (2014), Synthesis, Characterization and Catalytic Activity of Al/Fe2O3 Nanothermite, Journal of Thermal Analysis and Calorimetry 119, 309-317.
    [48] L. Zhong, Y.F. Mao, X. Zhou, D.W. Zheng, C.P. Guo, R.H. Wang, X.Q. Zhang, B. Gao and D.J. Wang (2021), 3D Printing of Hollow Fiber Nanothermites with Cavity-Mediated Self-accelerating Combustion, Journal of Applied Physics 129, 105105.
    [49] H.Y. Wang, J.P. Shen, D.J. Kline, N. Eckman, N.R. Agrawal, T. Wu, P. Wang and M.R. Zachariah (2019), Direct Writing of a 90 wt% Particle Loading Nanothermite, Advanced Materials 31(23), 1806575.
    [50] Y.F. Mao, L. Zhong, X. Zhou, D.W. Zheng, X.Q. Zhang,T. Duan, F.D. Nie, B. Gao and D.J. Wang (2019), 3D Printing of Micro-Architected Al/CuO-Based Nanothermite for Enhanced Combustion Performance, Advanced Engineering Materials 21(12), 1900825.
    [51] K.E. Neely, K.C. Galloway and A.M. Strauss (2019), Additively Manufactured Reactive Material Architectures as a Programmable Heat Source, 3D Printing and Additive Manufacturting 6, 4.
    [52] J.P. Shen, H.Y. Wang, D.J. Kline, Y. Yang, X.Z. Wang, M. Rehwoldt, T. Wu, S. Holdren and M.R. Zachariah (2020), Combustion of 3D Printed 90 wt% Loading Reinforced Nanothermite, Combustion and Flame 215, 86-92.
    [53] H.F. Yang, C.H. Xu, S.S. Man, H.B. Bao, Y.T. Xie, X.D. Li, G.C. Yang, Z.Q. Qiao and X.M. Li (2022), Effects of Hollow Carbon Nanospheres on Combustion Performance of Al/Fe2O3-Based Nanothermite Sticks, Journal of Alloys and Compounds 918(15), 165684.
    [54] A.K. Murray, W.A. Novotny, T.J. Fleck, I.E. Cunduz, S.F. Son, G.T.C. Chiu and J.F. Rhoads (2018), Selectively-Deposited Energetic Materials: A Feasibility Study of the Piezoelectric Inkjet Printing of Nanothermites, Additive Manufacturing 22, 69-74.
    [55] L. Zhong, X. Zhou, X.Y. Huang, D.W. Zheng, Y.F. Mao, R.H. Wang and D.J. Wang (2021), Combustion/decomposition Characteristics of 3D-Printed Al/CuO, Al/Fe2O3, Al/Bi2O3 and Al/PTFE Hollow Filaments, Materials Chemistry and Physics 271(1), 124874.
    [56] M.G. Zaky, A. Elbeih and T. Elshenawy (2021), Review of Nano-thermites: a Pathway to Enhanced Energetic Materials, Central European Journal of Energetic Materials 18(1), 63-85.
    [57] N.H. Yen and L.Y. Wang (2012), Reactive Metals in Explosives, Propellants, Explosive, Pyrotechnics 37(2): 143-55.
    [58] J.Y. Xu, Y.J. Chen, W.C. Zhang, Z.L. Zheng, C.P. Yu, J.X. Wang, C.K. Song, J.H. Chen, X.T. Lei and K.F. Ma (2022), Direct Ink Writing of nAl/pCuO/HPMC with Outstanding Combustion Performance and Ignition Performance, Combustion and Flame 236, 111747.
    [59] J.B. Liao, Z. Liu, X.D. Liu and Z.B. Ye (2018), Water-Soluble Linear Poly(ethylenimine) as a Superior Bifunctional Binder for Lithium–Sulfur Batteries of Improved Cell Performance, Journal of Physical Chemistry 122(45), 25917-25929.
    [60] R.B. Rao, K.L. Krafcik, A.M. Morales and J.A. Lewis (2005), Microfabricated Deposition Nozzles for Direct-Write Assembly of Three-Dimensional Periodic Structures, Advanced Materials 17(3), 289-293.
    [61] H.Y. Tsai, S.J. Chang, T.Y. Yang and C.C. Li (2018), Distinct Dispersion Stability of Various TiO2 Nanopowders Using Ammonium Polyacrylate as Dispersant, Ceramics International 44(5), 5131-5138.
    [62] K. Kitamura, Y. Mochizuki and T. Mori (2021), Study on Particle Dispersion Changes Over Time in Aqueous Al2O3 Slurries Containing Ammonium Polyacrylate, Colloids and Surfaces A: Physicochemical and Engineering Aspects 5, 126623.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE