| 研究生: |
蔡智偉 Tsai, Chih-Wei |
|---|---|
| 論文名稱: |
應用背向泵激光纖拉曼放大器於多波長光網路之動態等化研究 Dynamic Equalization in Multiwavelength Optical Networks by Using Backward-Pumped Fiber Raman Amplifier |
| 指導教授: |
黃振發
Huang, Jen-Fa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 等化 、拉曼放大器 |
| 外文關鍵詞: | Raman amplifier, equalizer |
| 相關次數: | 點閱:107 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有著低雜訊與寬頻增益的背向泵激光纖拉曼放大器 (Backward-Pumped Fiber Raman Amplifier),近年來被認定為一項可用於光纖通信系統中的技術。光纖拉曼放
大器主要被注目於它可彈性控制放大增益的頻寬與光增益的頻譜位置。
在多波長光網路中,非平坦寬頻光源所造成的通道波長功率變動會帶來些問題。在分波多工 (WDM) 系統中,通道波長功率變動會加強接收端光信號的嚴重下降並且使得在傳輸管理上更為困難。再頻域振幅編碼的光分碼多工 (SAC-OCDMA) 系統中,通道波長功率變動會造成接收端嚴重的多重存取干擾 (MAI) 問題。因此,動態增益等化器再多波長光網路中,扮演了一個重要的腳色,因為它有著能控制每個通道波長光功率頻譜的能力,因此能維持一個高的服務品質 (quality-of-service, QoS) 並且提供更具彈性的傳輸管理。
再本論文中,我們提出應用背向泵激光纖拉曼放大器於多波長光網路中作動態等化研究。從模擬結果得知我們提出的等化架構在多波長光網路中是簡單且有效的。
Backward-pumped fiber Raman amplifier (FRA) has recently been recognized as an enabling technology for optical fiber communication system with its low noise and broad gain bandwidth characteristics. The FRA has experienced increased attention for their flexible control of bandwidth and spectral position of optical gain.
In the multiwavelength optical networks, the power variance of wavelength channels caused by nonflattened broadband light source brings some problems. In the wavelength division multiplexing (WDM) system, the power variance of wavelength channels imposes a severe degradation on the optical signal at the receivers and makes difficulty in transmission management. In the spectral-amplitude coding optical code division multiple access (SAC-OCDMA) system, the power variance of wavelength channels causes severe multiple-access interference (MAI) problem at the receivers. Hence, dynamic gain equalizers play an important role in multiwavelength optical networks, because of their ability to control the power spectrum profile of the wavelength channels, therefore maintaining a high quality-of-service (QoS) and providing more flexibility in transmission management.
In this thesis, dynamic equalization in multiwavelength optical networks by using backward-pumped fiber Raman amplifiers is presented. The simulation result shows our proposed scheme is simple and effective in multiwavelength optical networks.
[01]. R. H. Stolen and E. P. Ippen, Raman gain in glass optical waveguides.
Appl. Phys. Lett., 22:6, 1973.
[02]. S. Namiki and Y. Emori, “Ultrabroad-Band Raman Amplifiers Pumped and
Gain-Equalized by Wavelength-Division-Multiplexed High-Power Laser
Diodes,”IEEE J. Sel. Topics Quantum Electron., vol. 7, pp.3-16, Jan.
2001.
[03]. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump
Interactions in a 100-nm Bandwidth Raman Amplifier,” IEEE Photon.
Technol. Lett., vol.11, pp.530-532, May. 1999.
[04]. V. E. Perlin and H. G. Winful, “Optimal Design of Flat-Gain Wide-Band
Fiber Raman Amplifiers,” IEEE J. Lightwave Technol., vol. 20, pp.250
-254, Feb. 2002.
[05]. P. Xiao, Q. Zeng, J. Huang, and J. Liu, “A New Optimal Algorithm for
Multipump Sources of Distributed Fiber Raman Amplifier,” IEEE Photon.
Technol. Lett., vol. 15, pp.206-208, Feb. 2003.
[06]. S. Cui, J. Liu, and X. Ma, “A Novel Efficient Optimal Design Method for
Gain-Flattened Multiwavelength Pumped Fiber Raman Amplifier,” IEEE
Photon. Technol. Lett., vol. 16, pp.2451-2453, Nov. 2004.
[07]. T. E. Stern, and K. Bala, Multiwavelength Optical Networks: A Layered
Approach, Reading, MA: Addison-Wesley, 1999.
[08]. G. E. Keiser, Optical Fiber Tech., vol. 5, pp.3-39, 1999.
[09]. M. Raisi, S. Ahderom, K. Alameh, and K. Eshraghian, “Dynamic
MicroPhotonic WDM Equalizer,” Proceedings of the 2nd IEEE International
Workshop on Electronic Design, Test and Applications (DELTA’04), pp. 59- 62, Jan. 2004.
[10]. A. M. Junior, H. J. Kalinowski, and A. A. P. Pohl, “Design and
Simulation of an In-Line Optical Gain Equalizer for Application in WDM
Systems,” ICTON, pp. 221-224, 2005.
[11]. M. K. Smit, “New focusing and dispersive planar component based on an
optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.
[12]. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide
grating for wavelength division multildemultiplexer with nanometer
resolution,” Electron. Lett.,vol. 26, pp. 87-88, 1990.
[13]. C. Dragone, “An N x N optical multiplexer using a planar arrangement of
two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812-815,
1991.
[14]. C. Dragone, C. A. Edwards, and R. C. Kistler, “Integrated optics N x N
multiplexer on silicon,” Photon. Technol. Lett., vol. 3, pp. 896-899,
1991.
[15]. H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength
multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th
Optoelectronics Conf. IEICE, Japan, 1992, Paper 17C1-3.
[16]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission
characteristics of arrayed-waveguide N×N wavelength multiplexer,” J.
Lightwave Technol., vol. 13, no.3, pp. 447-455, March 1995.
[17]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-
Waveguide Multiplexer on N×N Optical Interconnection,” J. Lightwave
Technol., vol. 14, no. 6,pp. 1097-1105, June 1996.
[18]. H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J.
Sel. Topics in Quantum Electron., vol. 10, pp. 393-402, March/April 2004.
[19]. R. W. Boyd, Nonlinear Optics, Academic Press, 1992.
[20]. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B.
Wakefield,“Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers,” IEE Proceedings, vol. 136, pp. 301-306, December 1989.
[21]. H. Masuda, A. Mori, K. Shikano, and M. Shimizu, “Design and Spectral
Characteristics of Gain-Flattened Tellurite-Based Fiber Raman
Amplifiers,” IEEE J.Lightwave Technol., vol. 24, pp. 504-515, Jan. 2006.
[22]. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for
fiber-optic Raman gain spectrum and response function,” J. Opt. Soc.
Am. B, vol. 19, pp. 2886-2892, December 2002.
[23]. A. G. Revesz and G. E. Walrafen, “Structural interpretations for some
Raman lines from vitreous silica,” J. of Non-Cryst. Solids, 54, pp. 323- 333, 1983.
[24]. M. N. Islam, Raman Amplifiers for Telecommunications 1, Springer, pp.
69, 2004.
[25]. B. Min, W. J. Lee, and N. Park, “Efficient Formulation of Raman
Amplifier Propagation Equations with Average Power Analysis,” IEEE
Photon. Technol. Lett., vol. 12, pp. 1486-1488, Nov. 2000.
[26]. X. Liu, H. Zhang, and Y. Guo, “A Novel Method for Raman Amplifier
Propagation Equations,” IEEE Photon. Technol. Lett., vol. 15, pp. 392-
394, March 2003.
[27]. C. D. Babich and J. F. Young, “Performance Modeling of a Planar
Waveguide Based Spectral Encoding System,” IEEE Lasers & Electro-Optics
Society Annual Meeting Proceedings, pp. 523-524, 1999.
[28]. W. Zhang, X. Feng, J. Peng, and X. Liu, “A Simple Algorithm for Gain
Spectrum Adjustment of Backward-Pumped Distributed Fiber Raman
Amplifiers,” IEEE Photon. Technol. Lett., vol. 16, pp. 69-71, 2004.
[29]. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J.
J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh Scattering
Limitations in Distributed Raman Pre-Amplifiers,” IEEE Photon. Technol.
Lett., vol. 10, pp. 159-161, Jan. 1998.
[30]. S. K. Varshney, K. Saitoh, and M. Koshiba, “Raman Amplification
Properties of Ultralow Loss Photonic Crystal Fibers,” IQEC/CLEO, pp.
588-589, 2005.
[31]. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1992.
[32]. F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri,
“Multipump Flattened-Gain Raman Amplifiers Based on Photonic-Crystal
Fibers,” IEEE Photon. Technol. Lett., vol. 17, pp.2556-2558, December
2005.
[33]. K. Kurokawa, K. Tajima, K. Tsujikawa, and K. Nakajima, “Reducing the
Losses in Photonic Crystal Fibres,” ECOC Proceedings, vol. 2, pp. 279-
282, 2005.
[34]. M. Kavehrad and D. Zaccarin, “Optical Code-Division-Multiplexed Systems
Based on Spectral Encoding of Noncoherent Sources,” IEEE J. Lightwave
Technol., vol. 13,pp. 534-545, March 1995.
[35]. S. F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain
Equalization in Multiwavelength Lightwave Systems Using Acoustooptic
Tunable Filters,” IEEE Photon. Technol. Lett., vol. 4, pp.269-271, Mar.
1992.
[36]. P. M. J. Schiffer, C. R. Doerr, L. W. Stulz, M. A. Cappuzzo, E. J.
Laskowski, A. Paunescu, and L. T. Gomez, “Smart Dynamic Wavelength
Equalizer with On-Chip Spectrum Analyzer,” IEEE Photon. Technol. Lett.,
vol. 12, pp. 1019-1021, Aug. 2000.
[37]. J. F. Huang, C. M. Tsai, and Y. L. Lo, “Compensating Fiber Gratings for
Source Flatness to Reduce Multiple-Access Interferences in Optical CDMA
Network Coder/Decoders,” IEEE J. Lightwave Technol., vol. 22, pp. 739-
745, Mar. 2004.
[38]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral
encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479
-482, April 1993.