簡易檢索 / 詳目顯示

研究生: 蔡智偉
Tsai, Chih-Wei
論文名稱: 應用背向泵激光纖拉曼放大器於多波長光網路之動態等化研究
Dynamic Equalization in Multiwavelength Optical Networks by Using Backward-Pumped Fiber Raman Amplifier
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 70
中文關鍵詞: 等化拉曼放大器
外文關鍵詞: Raman amplifier, equalizer
相關次數: 點閱:107下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有著低雜訊與寬頻增益的背向泵激光纖拉曼放大器 (Backward-Pumped Fiber Raman Amplifier),近年來被認定為一項可用於光纖通信系統中的技術。光纖拉曼放
    大器主要被注目於它可彈性控制放大增益的頻寬與光增益的頻譜位置。

    在多波長光網路中,非平坦寬頻光源所造成的通道波長功率變動會帶來些問題。在分波多工 (WDM) 系統中,通道波長功率變動會加強接收端光信號的嚴重下降並且使得在傳輸管理上更為困難。再頻域振幅編碼的光分碼多工 (SAC-OCDMA) 系統中,通道波長功率變動會造成接收端嚴重的多重存取干擾 (MAI) 問題。因此,動態增益等化器再多波長光網路中,扮演了一個重要的腳色,因為它有著能控制每個通道波長光功率頻譜的能力,因此能維持一個高的服務品質 (quality-of-service, QoS) 並且提供更具彈性的傳輸管理。

    再本論文中,我們提出應用背向泵激光纖拉曼放大器於多波長光網路中作動態等化研究。從模擬結果得知我們提出的等化架構在多波長光網路中是簡單且有效的。

    Backward-pumped fiber Raman amplifier (FRA) has recently been recognized as an enabling technology for optical fiber communication system with its low noise and broad gain bandwidth characteristics. The FRA has experienced increased attention for their flexible control of bandwidth and spectral position of optical gain.

    In the multiwavelength optical networks, the power variance of wavelength channels caused by nonflattened broadband light source brings some problems. In the wavelength division multiplexing (WDM) system, the power variance of wavelength channels imposes a severe degradation on the optical signal at the receivers and makes difficulty in transmission management. In the spectral-amplitude coding optical code division multiple access (SAC-OCDMA) system, the power variance of wavelength channels causes severe multiple-access interference (MAI) problem at the receivers. Hence, dynamic gain equalizers play an important role in multiwavelength optical networks, because of their ability to control the power spectrum profile of the wavelength channels, therefore maintaining a high quality-of-service (QoS) and providing more flexibility in transmission management.

    In this thesis, dynamic equalization in multiwavelength optical networks by using backward-pumped fiber Raman amplifiers is presented. The simulation result shows our proposed scheme is simple and effective in multiwavelength optical networks.

    CONTENTS Chapter 1. Introduction..........................................1 1.1 Introduction of Fiber Raman Amplifier................ 1 1.2 The Motivation and Destination of the Research..... 2 1.3 Sections Preview ....................................... 2 Chapter 2. Arrayed-Waveguide Grating routers and Fundamental Concepts of Fiber Raman Amplifiers (FRAs) ........5 2.1 Arrayed Waveguide Gratings (AWGs)...................... 5 2.2 The fundamentals concepts of FRAs ................... 9 2.3 Basic Structure of FRAs............................... 12 2.3.1 Forward-Pumped FRA................................ 12 2.3.2 Backward-Pumped FRA............................... 14 Chapter 3. Estimation of Raman Gain Coefficient and Numerical Method for Propagation Equations ..................17 3.1 Estimation of Raman Gain Coefficient ................ 17 3.2 Numerical Method for Propagation Equations .......... 20 3.2.1 Simulation Methods ............................... 22 3.2.2 Numerical Methods ................................ 24 Chapter 4. Compensation for Sources Flatness by FRAs in Spectrum-Sliced WDM systems ........................26 4.1 Simulation of AWG router ............................. 27 4.2 Pump-Power-Control Algorithm and System Description.. 28 4.2.1 Pump-Power-Control Algorithm ..................... 28 4.2.2 System Description................................ 32 4.3 Numerical Analysis ..................................... 33 Chapter 5. A Novel Efficient Optimal Design Method for Equalizing WDM Chips Power by FRAs...........................36 5.1 Fitness Function for Genetic Algorithm............... 36 5.2 Numerical Analysis...................................... 38 5.3 Discussion............................................... 45 Chapter 6. Flatness Compensation of Chips Spectra to Reduce Multiple-Access Interferences in Optical CDMA by Using FRAs.......................................46 6.1 Spectral-Amplitude-Coded (SAC) OCDMA .................. 47 6.2 AWG-based System Configuration ........................ 49 6.2.1 Maximal-Length Sequence (M-Sequence) Codes...... 49 6.2.2 Structured System by Using M-Sequence Codes... 51 6.3 Dynamic Power Equalization in SAC-OCDMA Systems by Using Backward-Pumped FRA.............................. 57 6.3.1 System Description................................ 57 6.3.2 Performance Analysis ............................. 59 6.4 Discussion............................................... 62 Chapter 7. Conclusion ...........................................64 References.........................................................67

    [01]. R. H. Stolen and E. P. Ippen, Raman gain in glass optical waveguides.
    Appl. Phys. Lett., 22:6, 1973.

    [02]. S. Namiki and Y. Emori, “Ultrabroad-Band Raman Amplifiers Pumped and
    Gain-Equalized by Wavelength-Division-Multiplexed High-Power Laser
    Diodes,”IEEE J. Sel. Topics Quantum Electron., vol. 7, pp.3-16, Jan.
    2001.

    [03]. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump
    Interactions in a 100-nm Bandwidth Raman Amplifier,” IEEE Photon.
    Technol. Lett., vol.11, pp.530-532, May. 1999.

    [04]. V. E. Perlin and H. G. Winful, “Optimal Design of Flat-Gain Wide-Band
    Fiber Raman Amplifiers,” IEEE J. Lightwave Technol., vol. 20, pp.250
    -254, Feb. 2002.

    [05]. P. Xiao, Q. Zeng, J. Huang, and J. Liu, “A New Optimal Algorithm for
    Multipump Sources of Distributed Fiber Raman Amplifier,” IEEE Photon.
    Technol. Lett., vol. 15, pp.206-208, Feb. 2003.

    [06]. S. Cui, J. Liu, and X. Ma, “A Novel Efficient Optimal Design Method for
    Gain-Flattened Multiwavelength Pumped Fiber Raman Amplifier,” IEEE
    Photon. Technol. Lett., vol. 16, pp.2451-2453, Nov. 2004.

    [07]. T. E. Stern, and K. Bala, Multiwavelength Optical Networks: A Layered
    Approach, Reading, MA: Addison-Wesley, 1999.

    [08]. G. E. Keiser, Optical Fiber Tech., vol. 5, pp.3-39, 1999.

    [09]. M. Raisi, S. Ahderom, K. Alameh, and K. Eshraghian, “Dynamic
    MicroPhotonic WDM Equalizer,” Proceedings of the 2nd IEEE International
    Workshop on Electronic Design, Test and Applications (DELTA’04), pp. 59- 62, Jan. 2004.

    [10]. A. M. Junior, H. J. Kalinowski, and A. A. P. Pohl, “Design and
    Simulation of an In-Line Optical Gain Equalizer for Application in WDM
    Systems,” ICTON, pp. 221-224, 2005.

    [11]. M. K. Smit, “New focusing and dispersive planar component based on an
    optical phased array,” Electron. Lett., vol. 24, pp. 385-386, 1988.

    [12]. H. Takahashi, S. Suzuki, K. Katoh, and I. Nishi, “Arrayed-waveguide
    grating for wavelength division multildemultiplexer with nanometer
    resolution,” Electron. Lett.,vol. 26, pp. 87-88, 1990.

    [13]. C. Dragone, “An N x N optical multiplexer using a planar arrangement of
    two star couplers,” IEEE Photon. Technol. Lett., vol. 3, pp. 812-815,
    1991.

    [14]. C. Dragone, C. A. Edwards, and R. C. Kistler, “Integrated optics N x N
    multiplexer on silicon,” Photon. Technol. Lett., vol. 3, pp. 896-899,
    1991.

    [15]. H. Takahashi, and Y. Hibino, “Arrayed-waveguide grating wavelength
    multiplexers fabricated with flame hydrolysis deposition,” in Dig. 4th
    Optoelectronics Conf. IEICE, Japan, 1992, Paper 17C1-3.

    [16]. H. Takahashi, K. Oda, H. Toba, and Y. Inoue, “Transmission
    characteristics of arrayed-waveguide N×N wavelength multiplexer,” J.
    Lightwave Technol., vol. 13, no.3, pp. 447-455, March 1995.

    [17]. H. Takahashi, K. Oda, and H. Toba, “Impact of Crosstalk in an Arrayed-
    Waveguide Multiplexer on N×N Optical Interconnection,” J. Lightwave
    Technol., vol. 14, no. 6,pp. 1097-1105, June 1996.

    [18]. H. Uetsuka, “AWG Technologies for Dense WDM Applications,” IEEE J.
    Sel. Topics in Quantum Electron., vol. 10, pp. 393-402, March/April 2004.

    [19]. R. W. Boyd, Nonlinear Optics, Academic Press, 1992.

    [20]. S. T. Davey, D. L. Williams, B. J. Ainslie, W. J. M. Rothwell, and B.
    Wakefield,“Optical gain spectrum of GeO2-SiO2 Raman fibre amplifiers,”   IEE Proceedings, vol. 136, pp. 301-306, December 1989.

    [21]. H. Masuda, A. Mori, K. Shikano, and M. Shimizu, “Design and Spectral
    Characteristics of Gain-Flattened Tellurite-Based Fiber Raman
    Amplifiers,” IEEE J.Lightwave Technol., vol. 24, pp. 504-515, Jan. 2006.

    [22]. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for
    fiber-optic Raman gain spectrum and response function,” J. Opt. Soc.
    Am. B, vol. 19, pp. 2886-2892, December 2002.

    [23]. A. G. Revesz and G. E. Walrafen, “Structural interpretations for some
    Raman lines from vitreous silica,” J. of Non-Cryst. Solids, 54, pp. 323- 333, 1983.

    [24]. M. N. Islam, Raman Amplifiers for Telecommunications 1, Springer, pp.
    69, 2004.

    [25]. B. Min, W. J. Lee, and N. Park, “Efficient Formulation of Raman
    Amplifier Propagation Equations with Average Power Analysis,” IEEE
    Photon. Technol. Lett., vol. 12, pp. 1486-1488, Nov. 2000.

    [26]. X. Liu, H. Zhang, and Y. Guo, “A Novel Method for Raman Amplifier
    Propagation Equations,” IEEE Photon. Technol. Lett., vol. 15, pp. 392-
    394, March 2003.

    [27]. C. D. Babich and J. F. Young, “Performance Modeling of a Planar
    Waveguide Based Spectral Encoding System,” IEEE Lasers & Electro-Optics
    Society Annual Meeting Proceedings, pp. 523-524, 1999.

    [28]. W. Zhang, X. Feng, J. Peng, and X. Liu, “A Simple Algorithm for Gain
    Spectrum Adjustment of Backward-Pumped Distributed Fiber Raman
    Amplifiers,” IEEE Photon. Technol. Lett., vol. 16, pp. 69-71, 2004.

    [29]. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J. Judkins, J.
    J. DeMarco, R. Pedrazzani, and D. J. DiGiovanni, “Rayleigh Scattering
    Limitations in Distributed Raman Pre-Amplifiers,” IEEE Photon. Technol.
    Lett., vol. 10, pp. 159-161, Jan. 1998.

    [30]. S. K. Varshney, K. Saitoh, and M. Koshiba, “Raman Amplification
    Properties of Ultralow Loss Photonic Crystal Fibers,” IQEC/CLEO, pp.
    588-589, 2005.

    [31]. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
    Programs. New York: Springer-Verlag, 1992.

    [32]. F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri,
    “Multipump Flattened-Gain Raman Amplifiers Based on Photonic-Crystal
    Fibers,” IEEE Photon. Technol. Lett., vol. 17, pp.2556-2558, December
    2005.

    [33]. K. Kurokawa, K. Tajima, K. Tsujikawa, and K. Nakajima, “Reducing the
    Losses in Photonic Crystal Fibres,” ECOC Proceedings, vol. 2, pp. 279-
    282, 2005.

    [34]. M. Kavehrad and D. Zaccarin, “Optical Code-Division-Multiplexed Systems
    Based on Spectral Encoding of Noncoherent Sources,” IEEE J. Lightwave
    Technol., vol. 13,pp. 534-545, March 1995.

    [35]. S. F. Su, R. Olshansky, G. Joyce, D. A. Smith, and J. E. Baran, “Gain
    Equalization in Multiwavelength Lightwave Systems Using Acoustooptic
    Tunable Filters,” IEEE Photon. Technol. Lett., vol. 4, pp.269-271, Mar.
    1992.

    [36]. P. M. J. Schiffer, C. R. Doerr, L. W. Stulz, M. A. Cappuzzo, E. J.
    Laskowski, A. Paunescu, and L. T. Gomez, “Smart Dynamic Wavelength
    Equalizer with On-Chip Spectrum Analyzer,” IEEE Photon. Technol. Lett.,
    vol. 12, pp. 1019-1021, Aug. 2000.

    [37]. J. F. Huang, C. M. Tsai, and Y. L. Lo, “Compensating Fiber Gratings for
    Source Flatness to Reduce Multiple-Access Interferences in Optical CDMA
    Network Coder/Decoders,” IEEE J. Lightwave Technol., vol. 22, pp. 739-
    745, Mar. 2004.

    [38]. D. Zaccarin and M. Kavehrad, “An optical CDMA system based on spectral
    encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479
    -482, April 1993.

    下載圖示 校內:2008-07-11公開
    校外:2008-07-11公開
    QR CODE