簡易檢索 / 詳目顯示

研究生: 陳冠仁
Chen, Guan-ren
論文名稱: 利用交流阻抗法研究新穎色素增感太陽能電池之電子傳輸性質
Investigation of the electron transport properties in novel dye-sensitized solar cells using impedance spectroscopy
指導教授: 吳季珍
Wu, Jih-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 76
中文關鍵詞: 電子傳輸性質交流阻抗法色素增感太陽能電池
外文關鍵詞: Dye-sensitized solar cell, Electron transport property
相關次數: 點閱:71下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文乃利用交流阻抗與開路電壓衰退法研究許多新穎的色素增感太陽能電池的電子傳輸性質,包含:氧化鋅單晶奈米線、氧化鋅奈米線/奈米顆粒複合結構、二氧化鈦單晶奈米線與二氧化鈦奈米線/奈米顆粒複合結構等色素增感太陽能電池。並與二氧化鈦奈米薄膜色素增感太陽能電池相比較。
    本研究首先分別以N3以及紅汞染料來作為氧化鋅單晶奈米線色素增感太陽能電池之染料,來研究不同染料對於效率之影響。結果顯示,雖然N3比起紅汞有較寬廣的吸收光譜,但由於紅汞敏化的色素增感太陽能電池有較好的填充因子,所以紅汞敏化的色素增感太陽能電池反而比N3敏化的來得高。交流阻抗與開路電壓衰退法分析都顯示N3敏化的氧化鋅單晶色素增感太陽能電池有較多的電子再結合的現象。所以和N3比較,紅汞為更適合氧化鋅色素增感太陽能電池之染料。另一方面,本研究以氧化鋅奈米線/奈米顆粒複合薄膜作為色素增感太陽能電池的電極,因此大大增加了氧化鋅單晶奈米線色素增感太陽能電池的效率。從交流阻抗分析法得知氧化鋅單晶奈米線在這種複合結構中扮演著快速傳輸電子的重要角色;而氧化鋅奈米顆粒則是提供較多的表面積讓染料吸附,因而可提升其效率。
    本研究亦以由不同比例的二氧化鈦單晶奈米線與奈米顆粒所組成的二氧化鈦奈米複合薄膜為色素增感太陽能電池之電極。經量測其光電效率後發現與二氧化鈦單晶奈米線色素增感太陽能電池一樣,效率都比純二氧化鈦奈米薄膜所組成的電池來得低。由交流阻抗法得知這兩種含二氧化鈦單晶奈米線的太陽能電池裡,都有著相當大的電子傳輸阻力。其效率低的原因應為二氧化鈦單晶奈米線在電池裡的方向是垂直於電子傳輸方向,因而造成了相當大的電子傳輸阻力進而減少了電池的效率。

    In this thesis, the electron transport properties in the anodes of the novel dye-sensitized solar cells (DSSCs), including the ZnO nanowire (NW), the ZnO NW/nanoparticle (NP) composite, the TiO2 NW, the TiO2 NW/NP composite and the TiO2 NP DSSCs were studied using electrochemical impedance spectroscopy (EIS) and open-circuit voltage decay (OCVD) measurements.
    The mercurochrome- and N3-sensitized ZnO NW DSSCs are used to investigate the effect of dye adsorption on the performances of the ZnO NW DSSCs. Due to a considerable higher fill factor, mercurochrome-sensitized ZnO NW DSSC shows somewhat higher efficiency than N3-sensitized one does even though N3 molecules possess wider adsorptive spectrum for light harvesting. Both of the EIS and OCVD analyses indicate that more electron recombination occurs in the N3-sensitized ZnO NW DSSC. The mercurochrome dye is proper for ZnO-based DSSC in comparison with Ru-complex dyes. In addition, a considerable efficiency enhancement is achieved using the well-aligned ZnO NW/NP composite anode compared to that of the ZnO NW one. EIS analyses have shown that the ZnO NW in the NW/NP composite anode plays an important role of the rapid transport route for electrons.
    TiO2 NW/NP composite films were fabricated by miximg various ratios of hydrothermal anatase NWs and P25 NPs for use in DSSCs. The performances of the pure-NW and the NW-NP composite DSSCs are inferior to those of the pure-NP DSSCs. EIS analyses show that there is larger electron transport resistance to the transparent conducting oxide (TCO) substrate in the NW and the composite cells. The poor efficiency of the NW DSSC is ascribed to the horizontal features of the NWs in the anode and the single-crystalline TiO2 NWs perpendicular to the electron transport direction are not able to enhance the performances of the DSSCs.

    Chinese abstract I English abstract II Acknowledgement IV Table of contents V Table index IX Figure index X Chapter 1 Introduction 1.1 Dye-Sensitized Solar Cell: A Promising Solar Cell in the Future 1 1.2 Technique of A.C. Impedance 3 1.3 One-dimensional nanostructure 4 1.4 Motivation of the Thesis 5 Chapter 2 Theory Foundation and Literature Survey 6 2.1 Dye-Sensitized Solar Cell 6 2.1.1 Basic Requirement of the Solar Cell 6 2.1.2 Operation principle of the DSSC 6 2.1.3 Calculation of the DSSC efficiency 8 2.1.4 Dye sensitizer in DSSC 9 2.2 Theory of the A.C. Impedance 10 2.2.1 Basic Theory of the EIS Technique 10 2.2.2 Physical meaning and characterization of the basic electric circuit elements 11 2.3 EIS analysis in DSSC 13 2.3.1 Impedance Analysis of the anode 13 2.3.2 Characteristics of the Impedance of the Semiconductor Electrode 17 2.3.3 Juan Bisquert’s diffusion-recombination model 20 2.3.4 Characteristics of DSSC EIS measurement 21 2.3.5 Procedure for estimation of electron transport parameters 23 2.4 Theory of the Open-Circuit Voltage Decay Measurement 24 2.4.1 Basic Concept of OCVD Measurement—Formula Leading 24 2.4.2 Basic Concept of OCVD Measurement— Chemical Capacitance 26 2.4.3 Basic Concept of OCVD Measurement— Physical Meaning 28 2.5 Literature survey 34 2.5.1 The ZnO nanowire DSSCs/the effect of dye adsorption on the performance on DSSC 34 2.5.2 The ZnO NW/NP composite DSSC 36 2.5.3 The DSSCs with TiO2 NW and NW/NP composite anodes 39 2.5.4 Effect of the amount of injectced electrons on the effective diffusion coefficient 40 Chapter 3 Experimental Section 42 3.1 Fabrication and characterization of anode materials 42 3.1.1 Synthesis and characterization of ZnO-NWs anodes 42 3.1.2 Synthesis and characterization of ZnO NW/NP composite anodes 43 3.1.3 Fabrication of TiO2 NWs, NW/NP composite and NPs anode 44 3.2 Fabrication of DSSCs 46 3.2.1 Dye adsorption and fabrication of the ZnO-NWs DSSC 46 3.2.2 Dye adsorption and fabrication of the ZnO NW/NP composite DSSC 47 3.2.3 Dye adsorption and fabrication of the TiO2 NW, NW/NP and NP DSSCs 47 3.3 Characterization, performance, EIS and OCVD measurement of DSSCs 48 3.4 Equivalent circuit model of DSSCs 48 3.5 Experiment instrument 49 3.5.1 Sputter 49 3.5.2 Solar simulator 50 Chapter 4 Results and Discussion 51 4-1 Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cell 51 4.1.1 The performances of the N3- and mercurochrome-sensitized DSSCs 51 4.1.2 EIS analyses 52 4.1.3 OCVD Measurement Results 54 4.1.4 Summary 55 4.2 Comparison of Performance and Electron Transport Properties in TiO2 –NP, ZnO-NW and ZnO NW/NP composite DSSCs 56 4.2.1 The performances of the TiO2 –NP, ZnO-NW and ZnO NW/NP composite DSSCs 57 4.2.2 EIS analyses 58 4.2.3 Summary 61 4.3 Performance and electron transport properties of the TiO2-nanocomposite dye-sensitized solar cell 62 4.3.1 Characterization of the anode films 62 4.3.2 DSSC performance 63 4.3.3 EIS Analyses -- Configuration Effect 64 4.3.4 EIS Analyses-- Thickness Effect 67 4.3.5 OCVD Measurement Results of the NW and NP Cells 70 4.3.6 Summary 71 Chapter 5 Conclusion 72 Reference 74

    1. Grätzel, M. Nature 2000, 403, 363.
    2. Nelson, J. The physics of solar cells, Imperial collage press, USA, 2, 2003.
    3. O’Regan, B.; Grätzel, M. Nature 1991, 353, 737.
    4. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J.Am. Chem. Soc. 2005, 127, 16835.
    5. http://www.solaronix.ch
    6. Macodonald, J. R. Impedance spectroscopy, John Wiley & Sons, USA, 2, 1987.
    7. http://www.ecochemie.nl/?pag=1
    8. Bard, A. J.; Faulkner, L. F. Electrochemical methods—Fundamentals and Applications, John Wiley & Sons, USA, 368, 2001.
    9. Shalaev, V. M.; Moskovits, M. Handbook of nanostructrued materials and nanotechnology, American Chemical Society, Washington, DC 1997.
    10. Wu, J. J.; Liu, S. C. Adv. Mater. 2002, 14, 215.
    11. Duan, X.; Wang, J.; Liber, C. M. Appl. Phys. Lett. 2000, 76, 1116.
    12. Bolm, G. M.; Woodall, J. M. Appl. Phys. Lett. 1970, 17, 373.
    13. Wu, Y.; Yang, P. Chem. Mater. 2000, 12, 605.
    14. Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Adv. Mater. 1999, 11, 1307.
    15. Huang, Y.; Duan, X.; Leiber, C. M. Small 2005, 1, 142.
    16. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897.
    17. Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Science 2001, 293, 1289.
    18. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nat. Mater. 2005, 4, 455.
    19. http://rredc.nrel.gov/solar/spectra/am1.5
    20. Grätzel, M. Nature 2001, 414, 338.
    21. Barbe, C. J.; Arendse, F.; Comte, P.; Jirousek, M.; Lenzmann, F.; Shklover, V.; Grätzel, M. J. Am. Ceram. Soc. 1997, 80, 3157.
    22. Nazeeruddin, M. K.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J.Am. Chem. Soc. 1993, 115, 6382.
    23. Adachi, M.; Sakamoto, M.; Jiu, J.; Ogata, Y.; Isoda, S. J. Phys. Chem. B 2006, 110, 13872.
    24. Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.
    25. Bisquert, J. J. Phys. Chem. B 2002, 106, 325.
    26. Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Sol. Energy Mater. Sol.Cells 2005, 87, 117.
    27. Wang, Q.; Moser, J-E.; Grätzel, M. J. Phys. Chem. B 2005, 109, 14945.
    28. Zaban, A.; Greenshtein, M.; Bisquert, J. CHEMPHYSCHEM. 2003, 3, 859.
    29. Bisquert, J. CHEMPHYSCHEM. 2003, 5, 5360.
    30. Jamnik, J.; Maier, J. Phys. Chem. Chem. Phys. 2001, 3, 1668.
    31. Bisquert, J.; Zaban, A.; Greenshtein, M.; Mora-Sero, I. J. Am. Chem. Soc. 2004, 126, 13550.
    32. Frank,S. N.; Bard, A. J. J. Phys. Chem. 1977, 81, 1484.
    33. Guo, M.; Diao, P.; Cai, S. J. Solid State Chem. 2005, 178, 1864.
    34. Wu, J. J.; Chen, G. R.; Yang, H. H.; Ku, C. H.; Lai, J. Y. Appl. Phys. Lett. 2007, 90, 213109.
    35. Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; Arakawa, H. Sol. Energy Mater. Sol.Cells 2000, 64, 115.
    36. Redmond, G.; Fitzmaurice, D.; Grätzel, M. Chem. Mater. 1994, 6, 686.
    37. Keis, K.; Lindgren, J.; Lindquist, S. E.; Hagfeldt, A. Langmuir 2000, 16, 4688.
    38. Baxter, J. B.; Aydil, E. S. Appl. Phys. Lett. 2005, 86, 053114.
    39. Baxter, J. B.; Aydil, E. S. Sol. Energy Mater. Sol.Cells 2006, 90, 607.
    40. Forro, L.; Chauvet, O.; Emin, D.; Zuppiroli, L.; Berger, H.; Levy, F. J. Appl. Phys. 1994, 75, 633.
    41. Ohsaki, Y.; Masaki, N.; Kitamura, T.; Wada, Y.; Okamoto, T.; Sekino, T.; Niihara, K.; Yanagida, S. Phys. Chem. Chem. Phys. 2005, 7, 4157.
    42. Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Nano Lett. 2006, 6, 215.
    43. Jiu, J.; Isoda, S.; Wang, F.; Adachi, M. J. Phys. Chem. B 2006, 110, 2087.
    44. Tan, B.; Wu, Y. J. Phys. Chem. B 2006, 110, 15932.
    45. Peter, L. M.; Wijayantha, K. G. U. Electrochem. Commun. 1999, 1, 576.
    46. Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949.
    47. van der Zanden, B.; Goossens, A. J. Phys. Chem. B 2000, 104, 7171.
    48. Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2003, 107, 8607.
    49. 賴致遠, “化學浴沉積法合成氧化鋅奈米線及其特性分析”, 國立成功大學化學工程研究所碩士論文, 民國95年, p. 58。
    50. Ku, C. H.; Wu, J. J. Cryst. Growth Des Revised.
    51. 呂嘉峻, “以水熱法成長二氧化鈦奈米線之研究”, 國立成功大學化學工程研究所碩士論文, 民國95年, p. 49-55。
    52. Eichberger, R.; Willig, F. Chem. Phys. 1990, 141, 159.

    下載圖示 校內:2010-06-11公開
    校外:2010-06-11公開
    QR CODE