簡易檢索 / 詳目顯示

研究生: 王士豪
Wang, Shih-Hao
論文名稱: 中孔洞氧化矽材料與孔洞碳材之合成與應用
The Synthesis and Application of Mesoporous Silicas Materials and Porous Carbon
指導教授: 林弘萍
Lin, Ho-Ping
何瑞文
Ho, Sui-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 98
中文關鍵詞: 孔洞碳材中孔洞氧化矽金屬氧化物
外文關鍵詞: porous carbon, metal oxide, mesoporous silica
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是以自組合材料化學為理論基礎,使用有機物的界面活性劑當模板,加上矽酸鈉當無機物之來源且在接近中性的條件下(pH=4~6)合成中孔洞氧化矽材料。界面活性劑的選擇上使用了兩種系列的區塊型界面活性劑。一為共聚塊狀的界面活性劑,P123(EO20PO70EO20),加入甲苯當有機相,形成「有機-界面活性劑-水」的微乳液,在近中性條件下與矽酸鈉聚合成中孔洞結構,經100 ℃水熱處理,再經560 ℃燒,將有機模版分子移除後即可得到囊泡狀中孔洞氧化矽材料。可由改變pH值、甲苯量、微乳化時間、矽酸鈉聚合時間、P123的濃度及水熱反應等因素改變囊泡狀的結構及孔洞大小。另一種界面活性劑為雙聚塊狀界面活性劑,P710 (C12(EO)10) 或P712(C12(EO)12),溶在水裡形成微乳液,再以矽酸鈉聚合成骨架,燒移除有機模板後可得六角堆積結構的中孔洞氧化矽材料。
      以中孔洞氧化矽當模板,使用酚醛樹脂做為碳的來源,經過含浸、聚合、碳化等步驟,移除氧化矽模板後即可得中孔洞碳材。此合成方法可依模板的結構和外觀不同,製備出相似或相同結構和外觀的中孔洞碳材,能夠以低成本來大量製備出中孔洞碳材,作為其他應用方面的研究。
      其中一種就是以中孔洞碳材當模板製備出奈米級的金屬氧化物。合成方法即以金屬硝酸鹽或金屬酸鹽(酸性條件下)當前驅物,含浸入中孔洞碳材的孔洞中,在250 ℃轉化成金屬氧化物及結晶化,再加溫到700 ℃移除碳材模板,即可得奈米級的金屬氧化物。奈米級的金屬氧化物由於其高表面積的特性,用於催化反應上,能有比低表面積塊狀(Bulk)的金屬氧化物更高的催化效率。

      Based on the concept of self-assembling, the organic surfactants have been widely used as template to synthesize the mesoporous inorganic materials. Considering on the environmental and economic concerns, the natural friendly and cheap neutral block copolymer surfactants of P123 (EO20PO70EO20), Pannox 710 (C12H23(EO)10 or Pannox 712 (C12H23(EO)12) were used in this thesis. To obtain the mesoporous silica foams with pore size of 10.0–40.0 nm we performed sodium silicate as silica source to combine with the P123-toluene-H2O o/w micro-emulsion at pH value range of 4.0–6.0. With a careful control on the toluene content, pH value, emulsifying time, aging time of silicate solution and hydrothermal condition, the mesoporous silicas of different pore sizes and mesostructures, high surface area, and high porosity can be conveniently obtained. When using Pannox 710 or 712 as template, the mesoporous silica with well-ordered hexagonal p6mm mesostructure was prepared.
      Due to existence of matching hydrogen-bonding interactions between silica and phenol-formaldehyde resin, the mesoporous carbons can be easily synthesized using the calcined mesoporous silicas as “hard nanotemplate” via a simple impregnation, drying at 100 oC, pyrolysis at 1000 oC under N2 atmosphere, and HF-etching for silica removal. Using mesoporous silicas of various mesostructures and pore sizes, the mesoporous carbons regarding as the replica of mesoporous silica have been obtained.
      The mesoporous carbons of hard framework could be considered as a hard-template to prepare the mesoporous metal oxides. Mixing the mesoporous carbons with metal ions or metal alkoxides in an acidic ethanol solution, drying, annealing at 250 oC, and calcination at 700 oC gave the mesoporous metal oxides or metal nanoparticles. Because of high surface area, dispersity and crystallinity, these metal nanoparticles have the potential applications in catalysts and fuel cell.

    目錄 第一章 緒論……………………………………………………………1 1.1 研究動機與目的…………………………………………………1 1.2 界面活性劑性質簡介……………………………………………2 1.3 微胞的簡介………………………………………………………4 1.4 微胞的形成………………………………………………………7 1.4.1 疏水效應………………………………………………………7 1.4.2靜電效應………………………………………………………7 1.4.3界面活性劑的分子排列………………………………………8 1.5 微乳液………………………………………………………… 10 1.6 矽酸鹽的化學概念…………………………………………… 13 1.7 中孔洞碳材的簡介…………………………………………….16 1.8 奈米金屬氧化物的簡介……………………………………… 18 第二章 實驗部份………………………………………………………21 2.1 化學藥品…………………………………………………………21 2.2 樣品合成方法……………………………………………………21 2.2.1介尺度結構整齊之中孔洞氧化矽材料合成方法……………21 2.2.2泡狀中孔洞之氧化矽材料合成方法…………………………22 2.2.3中孔洞碳材的合成方法………………………………………23 2.2.4金屬氧化物合成方法…………………………………………23 2.3 樣品鑑定方法……………………………………………………24 2.3.1熱重量分析儀(thermogravimetric analysis;TGA)…………24 2.3.2氮氣吸附/脫附測量(N2 adsorption/desorption isothermal)…… …………………………………………………………………24 2.3.2.1典型吸附/脫附等溫曲線圖………………………………25 2.3.2.2孔徑大小分布(Pore size distribution )之計算方法………27 2.3.2.3 BET表面積測量…………………………………………28 2.3.3 X-射線粉末繞射光譜儀(Powder X-ray Diffraction;XRD) ………………………………………………………………29 2.3.4穿透式電子顯微鏡 (Transmission electron microscopy;TEM) ………………………………………………………………31 第三章 中孔洞氧化矽材料合成………………………………………33 A.泡狀中孔洞之氧化矽材料………………………………………… 33 3.1 動機與目的………………………………………………………33 3.2 結果與討論………………………………………………………34 3.2.1改變pH值的影響………………………………………………34 3.2.2水熱時間的影響……………………………………………… 38 3.2.3改變微乳化時間(emulsion time)的影響…………………… 42 3.2.4改變擴孔劑(toluene)量的影響……………………………… 45 3.2.5矽酸鈉在pH=5的聚合時間對MCF的影響…………………48 3.2.6界面活性劑濃度的影響……………………………………… 52 B.介尺度結構整齊中孔洞氧化矽材料的合成……………………… 56 3.3 動機與目的………………………………………………………56 3.4結果與討論……………………………………………………… 57 3.4.1水熱的影響…………………………………………………… 57 3.4.2乙酸乙酯量的影響…………………………………………… 61 3.4.3 pH值的影響……………………………………………………62 第四章 中孔洞氧化矽材料應用於合成孔洞性碳材…………………65 4.1 動機與目的……………………………………………………… 65 4.2結果與討論……………………………………………………… 67 4.2.1以泡狀中孔洞氧化矽材料當固態模板合成中孔洞碳材…… 67 4.2.2以Pannox 710-H2O系統中孔洞材料當固態模板合成中孔洞碳材………………………………………………………………69 4.2.3改變酚醛樹脂之重量比例對碳材的影響……………………70 4.3孔洞性碳材應用於合成金屬氧化物…………………………… 78 4.3.1氧化鎂(Magnesium Oxide;MgO)……………………………79 4.3.2氧化鐵(Iron(III) Oxide;Fe2O3)………………………………82 4.3.3氧化鋁(Aluminum Oxide;Al2O3)……………………………84 4.3.4氧化鈦(Titanium Oxide;TiO2)……………………………… 87 4.3.5氧化鋯(Zirconium Oxide;ZrO2)………………………………89 第五章 結論……………………………………………………………92 參考文獻……………………………………………………………… 94

    1. D. Attwood, A. T. Florence,Surfactant Syste m: their Chemistry, Pharmacy and Biology, Chapman and Hall, New York, 1983.
    2. L. Sepulveda, J. Cortes, American Chemistry Society, 1985, 89, 5322.
    3. F. R. Husson, J. Ph. Chem., 1964, 68, 3504.
    4. R. R. Ying, C. p. Mehnert, and M. S. Eong, Angew. Chem., 1999, 38, 56.
    5. T. F. Todros, Surfactants, Academic Press : London, 1984.
    6. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.
    7. B. Naim, A Hydrophobic Interaction, Plnnum Press, New York, 1980.
    8. C. Tanford, The Hydrophobic Effect, 2nd edn. Wiley, New York, 1980.
    9. J. N. Israelachvili, S. Marcelja and R. G. Horn, Q. Rev. Biophys, 1980, 13, 121.
    10. D. J. Mithchell and B. W. Ninham, J. Chem. Soc. Farad. Trans. II, 1981, 77, 1264.
    11. K. Holmberg, B. Jönsson, B. Kronberg and B. Lindman, Surfactants and Polymers in Aqueous Solution, Wiley Press, England, 2002.
    12. Gareth D. Rees and Brian H. Robinson, Adv. Mater. 1993, 5, 608.
    13. Manfred Kahlweit, Science, 1988, 240, 617.
    14. R. K. Iler, The Chemistry of Silica, John Wiley, New Nork, 1979.
    15. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Freng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D. Stukey. Chem. Mater. 1994, 6, 1176.
    16. C. J. Brinker and G. W. Scherer, J. Non Cry. Solids, 1985, 70, 301.
    17. H. C. Foley, J. Microporous Mater., 1995, 4, 407.
    18. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York 1988.
    19. T. Kyotani, Carbon, 2000, 38, 269.
    20. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr, 1986, 352, 3.
    21. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B, 2000, 104, 7960.
    22. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G. Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.
    23. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B,2000, 104, 7960.
    24. J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
    25. W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
    26. J. Lee, K. Sohn and T. Hyeon, J. Am. Chem. Soc., 2001, 123, 5146.
    27. M. J. Fuller, M. E. Warwick, J. Catal., 1973, 29, 441.
    28. F. Sala, F. Trifiro, J. Catal., 1974, 34, 68.
    29. M. Itoh, H. Hsttori, K. Tanabe, J. Catal. 1967, 43, 192
    30. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.
    31. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B. Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834 .
    32. A. Sayari, Chem. Mater., 1996, 8, 1840.
    33. R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
    34. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994, 39, 63.
    35. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996, 100, 9906.
    36. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf. Sci. Catal. 1994, 84, 69.
    37. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
    38. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature, 1994, 368, 317.
    39. P. T. Tanev, T. J. Pinnavaia, Science, 1995, 267, 865.
    40. R. Ryoo, S. H. Joo, M. Kruk and M. Jaroniec, Adv. Mater., 2001, 13(9), 677.
    41. P. Schmidt-Winkel, W. W. Jr. Lekens, D. Y. Zhao, P. Yang, B. F. Chmelka and G. D. Stucky, J. Am. Chem. Soc., 1999, 121, 254.
    42. Q. Sun, P. J. Kooyman, J. G. Grossmann, P. H. H. Bomans, P. M. Frederik, P. C. M. M. Magusin, T. P. M. Beelen, R. A. van Santen, N. A. J. M. Sommerdijk, Adv. Mater., 2003, 15(3), 1097.
    43. D. L. Wilcox, M. Berg, Mater. Res. Soc. Symp. Proc., 1995, 372, 3.
    44. H. P. Lin, Y. R. Cheng, C. Y. Mou, Chem. Mater., 1998, 10, 3772.
    45. K. J. C. v. Bommel, J. H. Jung, S. Shinkai, Adv. Mater., 2001, 13, 1472.
    46. M. Kruk, M. Jaroniec and A. Sayari, J. Phys. Chem. B, 1999, 103, 4590.
    47. J. R. Matos, M. Kurk, L. P. Mercuri, M. Jaroniec, L. Zhao, T. Kamiyama, O. Terasaki, T. J. Pinnavaia and Y. Lin, J. Am. Chem. Soc., 2003, 125, 821.
    48. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
    49. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
    50. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
    51. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996, 12, 6202.
    (b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467.
    52. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung, P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
    53. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem. Commun., 1995, 1617.
    54. C. R. Bansal, J. B. Donnet, F. Stoeckli, Active Carbon, Marcel Dekker, New York, 1988.
    55. M. Kruk, M. Jaroniec, R. Ryoo and S. H. Joo, J. Phys. Chem. B., 2000, 104, 7960.
    56. J. Lee, K. Sohn and T. Hyeon, Chem. Comm., 2002, 2674.
    57. W. W. Lukens and G. D. Stucky, Chem. Mater., 2002, 14, 1665.
    58. J. Lee, K. Sohn and T. Hyeon, J. Am. Chem. Soc., 2001, 123, 5146.
    59. W. C. Li, A. H. Lu, C. Weidenthaler and F. Schuth, Chem. Mater., 2004, 16, 5676.
    60. J. C. Yu, A. Xu, L. Zhang, R. Song, and L. Wu, J. Phys. Chem. B, 2004, 108, 64.
    61. K. Shi, Y. Chi, H. Yu, B. Xin, H, Fu, J. Phys. Chem. B, 2005, 109, 2546.
    62. Y. Xiong, Y. Xie, Z. Li, R. Zhang, J, Yang, C. Wu, New J. Chem, 2003, 27, 588.
    63. M. Kagawa, Y. Synon, J. Am. Ceram. Soc., 1986, 69, 50.
    64. S.Che, Z. Liu, T. Ohasuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature, 2004, 429, 281.
    65. K. Flodstrom, H. Wennerstrom, V. Alfredsson, Langmuir, 2004, 20, 680.
    66. J. R. Lopes and W. Loh, Langmuir, 1998, 14, 750.
    67. R. Glass, M. Arnold, E. A. C. Adam, J. Blmmel, C. Haferkemper, C. Dodd, J. P. Spatz, New J. Phys.,2004, 6 ,101.
    68. Yuksel BAYRAK, Turk J Chem, 2003, 27 , 487.
    69. S. Z. Chu, S. Inoue, K. Wada, Di Li, H. Haneda, and S. Awatsu, J. Phys. Chem. B, 2003, 107, 6586.
    70. X. S. Fang, C. H. Ye, L. D. Zhang, J.X. Zhang, J. W. Zhao, P. Yan, small, 2005, 4, 422.
    71. Dennis E. Discher and Randall D. Kamien, Nature, 2004, 430.

    下載圖示 校內:2006-08-08公開
    校外:2006-08-08公開
    QR CODE