| 研究生: |
趙禹杰 Chao, Yu-Chieh |
|---|---|
| 論文名稱: |
澱粉及蛋白腖複合基質厭氧醱酵產氫程序之功能評估 Performance Evaluation of Hydrogen Fermentation Process Utilizing Starch and Peptone as Multiple Substrates |
| 指導教授: |
鄭幸雄
Cheng, Sheng-Shung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 141 |
| 中文關鍵詞: | 蛋白腖 、厭氧醱酵 、澱粉 、生物產氫 、薄膜分離 |
| 外文關鍵詞: | Starch, hydrogen fermentation, lactic acid, propionic acid |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
厭氧產氫的過程是一連串電子傳遞的反應,有機物的電子經過生物作用後,最後以氫氣的型式釋放出來,而自然界中眾多有機物質中,以碳水化合物目前為最適合產氫的基質,本研究以聚醣類的澱粉為基質,輔以蛋白腖的添加進行產氫試驗。為了獲取更高的氫氣產率,在研究初期以食品廠、果糖廠的厭氧污泥、牛糞堆肥、牛胃抽取物及羊胃抽取物為植種來源,輔以熱篩以可溶性澱粉及蛋白腖為基質進行生化氫氣產能試驗。經過三個世代的轉植培養後,各產氫菌源對於複合基質的產氫能力均差不多,不過卻有不同的產氫特性,其中以牛糞堆肥有最快的產氫速率,食品廠的產氫持續時間較持久,而以變性梯度明膠電泳法分析所得的優勢產氫菌群均為相同的,顯示以相同條件及基質進行三次繼代培養後,對主要產氫菌群的多樣性,培養的環境條件比起植種來源更具有決定性的影響力。
由於在許多先導的研究中發現,以複合基質來進行產氫反應有其優勢。不過在以不同的碳水化合物及蛋白質組成基質時,會有不同的氫醱酵現象。本研究以不同的澱粉/蛋白腖的基質配比下,進行碳、氮元素反應流向的探討,結果顯示在蛋白腖含量高的基質配比下,進行醱酵反應,氮素多流向氨氮;而當基質比例中蛋白腖的含量較少時(soluble starch:peptone = 3:2、4:1、5:0),氨氮則明顯地減少,此時蛋白腖主要為合成生物質體,而蛋白腖的醱酵反應則不明顯。
由於本研究以澱粉這種聚醣類進行氫醱酵時,澱粉並不能直接被菌種所利用,因此在反應時,必需先分泌出澱粉水解酶將澱粉分解成小分子的醣頪。澱粉水解酵素分析的結果,發現進流澱粉及蛋白腖的醱酵槽中所產生的amylase在65℃時amylase呈現最高的酵素活性,與菌體生長的環境(35℃)不同,顯示這些混合菌種生產的amylase具有很好的熱穩定性。以此醱酵槽中的樣品進行批次實驗,發現環境中澱粉的存在會使澱粉水解酶的活性增加,澱粉水解酶活性與產氫速率有相似的曲線。
研究中以反應器連續進流玉米澱粉及蛋白腖的厭氧產氫程序,實驗利用先前在不同的植種菌源中強化培養的厭氧產氫菌源為菌源,進行連續培養,試程以20 kg/m3-day 開始,並且進行基質加熱預處理對於連續醱酵之影響,澱粉的熱處理對於氫醱酵的程序而言,有重要的影響。加熱處理過的澱粉較有利於氫醱酵的轉化與氫氣的回收,而進流未加熱的澱粉於連續流的試驗中將使整體的轉化率下降。由於試程的轉換,使反應槽中有醱酵作用的進行卻無氫氣的釋出,而且累積大量的丙酸,但以批次實驗進行探討,仍可偵測到氫氣的生成,推測是由有機氮的裂解率、乳酸生成路徑、菌種的轉變等數個因子造成槽中的醱酵反應。
The multiple substrates, starch and peptone, were investigated for anaerobic hydrogen production in this study. This study included the compare of different enrich cultures, the effects of substrate composition on hydrogen fermentation and the performance evaluation of a mesophilic biohydrogen reactor.
The seeding sludge was enriched from five different sources of anaerobic sludge. After 3 times of successfully transferring enrichment cultures to new medium and growing up, the recovery of hydrogen gas from multiple substrates of starch and peptone would reach similar and stable levels. DGGE fingerprint of the bacteria domain 16S rDNA fragments revealed that the diversity of different inoculia were almost similar.
Among of all the organic substances in Nature, carbohydrates have been proved to be a suitable substrate for anaerobic hydrogen production. However, protein is a good substrate for cell growth and can promote hydrogen production. Besides, the presence of protein in the substrate would enlarge the buffer capacity of the broth. Therefore, the multiple substrates of carbohydrate and protein would be the better choice for hydrogen fermentation. The ratios of starch and peptone in the multiple substrates would also affect the rate of fermentation noticeably. When the content of starch increased to 60 % in the multiple substrates, the hydrogen production would increase noticeably. But without peptone in the multiple substrates, the bacteria would degenerate and lose the ability to produce hydrogen.
A hydrogen fermentor which fed with 12,000 mg/L corn starch and 8,000 mg/L peptone was operated at different sludge retention time (SRT) and hydraulic retention time (HRT). A micro-filtration membrane was employed for the separation and recovery of the biomass. The result revealed that starch gelatinizing was an important process for hydrogen production in continuous flow operation. After the influent changed to raw starch (without gelatinizing) in the same organic loading rate, 20 kg/m3-day, hydrogen production rate dropped obviously. At the same time, the starch conversion ratio would drop to 40%. The compositions of the volatile fatty acids in the effluent shifted to acetic acid and propoinic acid. SRT and HRT were important operational parameters to recovery the hydrogen production in the hydrogen fermentor. The ammonia in the effluent decreased as the SRT decreased. This result implied that longer SRT could enhance the degradation of peptone. But the metabolism of peptone would lead to hydrogen consumption because of no hydrogen in biogas. However, hydrogen production and consumption did occur in the batch test. As the HRT decreased to 6 hours, the hydrogen gas could be detected in the biogas and lactic acid could be detected in the effluent. Furthermore, lactic acid was an important intermediate which could be detected in the shock loading phase and in the batch test. Lactate produced along with the hydrogen production, and consumed consequently. This indicated that the consortium in the fermentor was very complex. And shorten HRT could be a strategy for hydrogen recovery.
白明德 (1999) “厭氧生物產氫機制與程序操作策略之研究”, 國立成功大學環境工程研究所碩士論文。
李孟哲 (2000) “以澱粉為碳源探討α-澱粉水解酵素之醱酵環境”, 國立成功大學化學工程研究所碩士論文。
林佳玲 (2000) “澱粉水解酵素對澱粉基質反應之探討”, 國立成功大學化學工程研究所碩士論文。
張仕旻 (2002) “利用薄膜反應器於高溫厭氧產氫生物程序之研究”, 國立成功大學環境工程學系碩士論文。
陳育輝 (1995) “α型澱粉水解酵素之動力學探討”, 國立成功大學化學工程研究所碩士論文。
陳晉照 (2002) “CSTR系統厭氧產氫之研究”,逢甲大學土木及水利工程學系博士論文。
黃俊霖 (2001) “以分子生物技術探討厭氧生物產氫程序之菌群結構”, 國立中央大學環境工程研究所碩士論文。
簡青紅 (2003) “利用傳統培養方法和分子生物方法探討厭氧生物產氫反應槽的微生物社會結構”,國立成功大學生物學系碩士論文。
白明德、鄭幸雄 (2001) 基質組成之glucose/peptone對厭氧氫發酵反應與微生物生長的影響. 第26屆廢水處理研討會論文摘要集, 1-80。
林秋裕、陳晉照、林明正 (1999a) Hydrogen production in anaerobic acidogenesis process-influence of therma isolation and incubation environment. 第24屆廢水處理研討會論文集, 21-26。
林秋裕、林明正、陳晉照 (1999b) pH控制對懸浮性厭氧微生物之影響. 第24屆廢水處理研討會論文集, 21-26。
林秋裕、周家弘 (2000a) ASBR法應用於懸浮性厭氧微生物產氫之研究, 345-350。第25屆廢水處理研討會論文集, 357-361。
林秋裕、林明正、周家弘 (2000b) CSTR反應槽馴養不同污泥之產氫能力探討. 第25屆廢水處理研討會論文集, 362-367。
林秋裕、周家弘、賴奇厚 (2001a) ASBR反應相/沉降相時間比與產氫效率之關係. 第26屆廢水處理研討會論文摘要集, 1-73。
林明瑞、盧重興、邱毓明、賴欣宏 (2000c) 四種反應槽厭氧產氫效率之比較研究. 第25屆廢水處理研討會論文集, 345-350。
林明瑞、盧重興、賴欣宏、邱毓明(2000d) 四種反應槽其厭氧產氫反應動力學之模擬研究. 第25屆廢水處理研討會論文集, 351-356。
林明瑞、盧重興、楊聰宏、賴欣宏 (2001b) 溫度、pH對柱塞流式與無攪拌式反應之發酵產氫效率的影響比較. 第26屆廢水處理研討會論文摘要集, 1-72。
林明瑞、盧重興、賴欣宏、楊聰宏 (2001c) 不同操作條件對CSTR發酵產氫效率之影響及反應動力學之模擬研究. 第26屆廢水處理研討會論文摘要集, 1-83。
林信一、蔡瀛逸、吳柔賢 (2001d) 水解生物污泥厭氧消化產氫之研究. 第26屆廢水處理研討會論文摘要集, 1-85。
吳石乙、林祺能、陳英如、李國興、林秋裕、張嘉修 (2001a) 流化床中厭氧生物產氫之水力動力性質. 第26屆廢水處理研討會論文摘要集, 1-70。
吳石乙、吳政潔、林祺能、陳韋蒨、李國興、林秋裕、張嘉修 (2001b) 產氫污泥固定化之特性與製備方法. 第26屆廢水處理研討會論文摘要集, 1-71。
李國興、謝家琦、劉宏秀、汪玉婷、林祺能、林屏杰、林秋裕、張嘉修 (2001) 以顆粒化產氫污泥固定床進行連續式厭氧產氫之操作. 第26屆廢水處理研討會論文摘要集, 1-86。
范姜楷、王惠君、李國興、楊立豪、林屏杰、林秋裕、張嘉修 (2001) 以生活污泥進行連續是產氫發酵與氫氣純化. 第26屆廢水處理研討會論文摘要集, 1-68。
姚厚帆、翁巧玲、李國興、林屏杰、林秋裕、張嘉修 (2001) 以生物膜填充床反應器進行氫氣發酵. 第26屆廢水處理研討會論文摘要集, 1-29。
施翠盈、許恆維、劉憶芬、曾怡禎 (2001) 本土性梭菌屬產氫菌株之生理特性. 第26屆廢水處理研討會論文摘要集, 1-82。
涂良君、李季眉 (1999) 產氫光合作用細菌之分離與產氫之特性. 第24屆廢水處理研討會論文集, 173-178。
秦咸隆、方維霖、陳如學、黃淑旻、周志雄 (2001) 利用饋料式厭氧發酵技術生產氫氣. 第26屆廢水處理研討會論文摘要集, 1-87。
康美祝、陳心潔、許鎮龍、歐陽嶠暉 (2001) 薄膜生物反應器(MBR)再不同水力停留時間及消化液回流比之處裡特性. 第26屆廢水處理研討會論文摘要集, 1-39。
張肇栓、林屏杰、張嘉修 (2000) 連續式中空纖維微過濾膜反應器在染料廢水生物處理之應用. 第25屆廢水處理研討會論文集, 1-5。
張逢源、周家弘、林秋裕 (2001) UASB與ASBR反應槽產氫能力之探討. 第26屆廢水處理研討會論文摘要集, 1-74。
張嘉修,范姜楷,林屏杰(2001).以中空纖維微過濾膜結合CSTR反應器進行產氫醱酵第二十六屆廢水研討會
張嘉修,李國興,羅泳中,吳季芳,林屏杰(2001).以生物填充床反應進行連續氫氣醱酵 第二十六屆廢水研討會
曾怡禎、許恒維、陳佳隆 (2000) 梭菌屬(Clostridium)的分離及其產氫活性的影響因子. 第25屆廢水處理研討會論文集, 315-320。
董昀昌、李季眉、林瑤玓 (2001) 產氫光合作用細菌利用厭氧產氫程序放流水的產氫能力研究. 第26屆廢水處理研討會論文摘要集, 1-75。
賴奇厚、陳晉照、林秋裕、林屏杰、張嘉修 (2001) 營養鹽類對厭氧產氫之影響. 第26屆廢水處理研討會論文摘要集, 1-69。
黃俊霖、陳晉照、林秋裕、劉文佐 (2000a) 以分子生物技術進行厭氧生物產氫菌群結構之研究. 第25屆廢水處理研討會論文集, 321-326。
黃正賢、林信一、蔡瀛逸、謝炎恭 (2000b) 以不同基質及培養方式探討厭氧消化產氫之初期研究. 第25屆廢水處理研討會論文集, 327-332。
蔡瀛逸、林信一、黃正賢、謝炎恭、吳柔賢 (2000) 不同厭氧程序控制對單純溶解性基質產氫之研究. 第25屆廢水處理研討會論文集, 333-337。
蔡瀛逸、林信一、吳柔賢 (2001) 不同厭氧消化程序控制產氫之基質特性變異研究. 第26屆廢水處理研討會論文摘要集, 1-84。
鄭幸雄、曾怡禎、白明德 (1999) 厭養生物分酸化蛋白質有機物產氫行為與產氫程序之研究. 第24屆廢水處理研討會論文集, 27-32。
鄭幸雄、曾怡禎、白明德 (2000a) 厭氧生物乙酸化分解蛋白質有機物的生物產氫行為與產氫動力模式. 第25屆廢水處理研討會論文集, 299-304。
鄭幸雄、白明德、張仕旻、吳坤龍、陳文欽、陳文卿 (2000b) 厭氧生物分解水解污泥產氫之可行性之研究. 第25屆廢水處理研討會論文集, 305-309。
鄭幸雄、張仕旻 (2000c) 高溫厭氧產氫菌群分解peptone之脫氮機制之研究. 第25屆廢水處理研討會論文集, 310-314。
鄭幸雄、李東峰、梁德明 (2000) 實廠厭氧生物反應槽產氫現象. 第25屆廢水處理研討會論文集, 388-392。
鄭幸雄、彭欽鑫、林泓湚 (2000d) 厭氧生物產氫在脫氨過程中所扮演角色. 第25屆廢水處理研討會論文集, 393-398。
鄭幸雄、白明德、蕭嘉瑢、趙禹杰、楊雅斐 (2001a) 氫氣分壓對厭氧產氫菌分解不同有機物之影響. 第26屆廢水處理研討會論文摘要集, 1-75。
鄭幸雄、張仕旻 (2001b) 乙酸在不同pH值環境下對於高溫厭氧產氫菌之影響. 第26屆廢水處理研討會論文摘要集, 1-79。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐、陳錫添 (2001c) 發酵與光合產氫組合程序處裡有機廢液的反應機制及應用性探討. 第26屆廢水處理研討會論文摘要集, 1-81。
鄭幸雄、林秋裕、曾怡禎、李季眉、林信一、林明瑞、劉文佐、陳錫添 (2001d) 厭氧生物產氫機制及程序控制之技術研發概論. 工業污染防治. 79: 173 - 193。
謝淵林、曾四恭、張育傑(2000) 利用中空矽膠管薄膜生物反應槽進行廢水同時硝化脫硝之反應. 第25屆廢水處理研討會論文集, 270-274。
蕭景庭、李季眉、董昀昌 (2000) 不同產氫光合作用細菌之最佳產氫條件研究, 338-344。
Adams, M. W. W., L. E. Mortenson, and J. S. Chen. 1980. Hydrogenase. Biochim. Biophys. Acta. 594: 105-176.
Amann, R. I., W. Ludwig, and K. H. Schliefer. 1995. Phylogenetic identication and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. Mar.: 143-169.
Adams, M. W. W., and E. I. Stiefel. 1998. Biological hydrogen production: not so elementary. Science. 282: 1842-1843.
Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial population. Appl. Environ. Microbiol. 56: 1919-1925.
Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure. 1985. Glucose fermentation by Clostridium butyricum growth under a self generated gas atmosphere in chemostat culture. Appl. Microbiol. Biotechnol. 23: 21-26.
Andreesen, J. R., H. Bahl, and G. Gottschalk. 1989. Introduction to the physilogy and biochemistry of genus Clostridium. In: Clostridia, Minton N. P. and Clark J. D. (ed.) Plenum Press. New York. pp. 27-62.
APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th edition. American Public Health Association, New York, USA.
Bailey, A. D., G. S. Hansford, and P. L. Dold. 1994. The enhancement of upflow anaerobic sludge bed reactor performance using crossflow microfiltration. Water Res. 28: 291-295.
Bai, M. D., S. S. Cheng and I. C. Tseng. 2001a. Biohydrogen produced due to peptone degradation by pretreated seed sludge. 2001 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, Fukuoka, Japan.1, pp. 315-320.
Bai, M. D., S. S. Cheng, S. M. Chang, K. L. Wu and W. C. Chen. 2001b. Feasibility study of hydrogen production with anaerobic digestion of pretreated sludge. Proceedings of 9th World Congress on Anaerobic Digestion 2001. Antwerpen. Belgium. 2, 245-247.
Bai, M. D., S. S. Cheng and S. M. Chang. 2001c. Effect of peptone/glucose ratio on biohydrogen production through anaerobic fermenting mixture of glucose and peptone. Proceedings of 2nd International Water Association World Water Congress. Berlin. Germany.
Bai, M. D., S. S. Cheng and H. C. Chien. 2002a. Feasibility study of hydrogen fermentation applied to waste sludge treatment. Proceedings of 3rd International Symposium on Anaerobic Digestion on Solid Wastes. Munich. Germany.
Bai, M. D. and S. S. Cheng. 2002b. Inhibiting effect on hydrogen production caused by hydrogen partial pressure. Proceedings of 6th Biennial International Symposium on Environmental Biotechnology. Veracruz. Mexico.
Bai, M. D., S. S. Cheng, Y.F. Wang, and C.J. Hsiao. 2003a. Effects of hydraulic retention time on hydrogen fermentation on multiple substrates. 2003 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, 19-23, October, Bangkok, Thailand.
Bai, M.D., S.S. Cheng and Y.C. Chao. 2003b. Effects of substrates component on hydrogen fermentation of multiple substrates. 2003 ASIAN WATERQUAL, IWA Asia-Pacific Regional Conference, 19-23, October, Bangkok, Thailand.
Baronofsky, J. J., W. J. A. Schreurs, and E. V. Kashket. 1984. Uncoupling by acetic acid limits growth of and acetogenesis by Clostridium thermaceticum. Appl. Environ. Microbiol. 48:1134-1139.
Batstone D. J., J. Keller, I. Angelidaki, S.V. Kalyuzhnyi, S. G. Pavlostathis, A. Rozzi, W.T.M. Sanders, H. Siegrist, V. A. Vavilin. 2002. Anaerobic Digestion Model No. 1. IWA publishing. London. 5-16.
Bernfeld, Peter. 1955. Amylase α and β. Methods Enzymol. 1: 149-155.
Brosseau, J. D., and J. E. Zajic. 1982. Hydrogen-gas production with Citrobacter intermedius and Clostridium pasteurianum. Journal Chemical Technology and Biotechnology. 32: 496-502.
Bouhabila, E. H., R. B. Aim, and H. Buisson. 2001. Fouling characterization in membrane bioreactors. Separation and Purification Technology. 22 – 23: 123 – 132.
Chang, J. S., K. S. Lee and P. J. Lin. 2002. Biohydrogen production with fixed-bed bioreactors. International Journal of Hydrogen Energy 27: 1167-1174.
Chang, C. N., C. C. Chiu, C. P. Ho, and Y. S. Ma. 2000. Recovering dosmestic wastewater by submerged membrane bioreactor (SMBR). 第25屆廢水處理研討會論文集, 145-150。
Chen, J. S. and L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim. Biophys. Acta. 371: 283-298.
Chen, C. K., and H. P. Blaschek. 1999. Effect of acetate on molecular and physiological aspects of Clostridium beijerinckii NCIMB 8052 solvent production and strain degeneration. Appl. Environ. Microbiol. 65:499-505.
Chen, C. C., and C. Y. Lin. 2000. Using sewage sludge as seed in an anaerobic hydrogen producing reactor. 第25屆廢水處理研討會論文集, 368-372。
Chen, C. C., and C. Y. Lin. 2000. Influence of substrate on anaerobic hydrogen producting reactors seeded with sewage sludge. 第25屆廢水處理研討會論文集, 373-377。
Cheng, S. S., I. C. Tseng., and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IWA Asic-Pacific Regional Conference, 1, Taipei, Taiwan. 759-764.
Cheng, S. S., S. T. Chen, and M. D. Bai. 2000. Biohydrogenation in general-how does it work and how can it be better? 第25屆廢水處理研討會論文集, 378-382。
Cheng, S. S., S. T. Chen, C. Y. Lin, I. C. Tseng, C. M. Lee, S. I. Lin, R. Lin, and W. T. Lin. 2000. Current status of a biohydrogenation project in Taiwan. 第25屆廢水處理研討會論文集, 383-387。
Cheng, S.S., I.C. Tseng and M. D. Bai. 1999. Behavior study of anaerobic hydrogenation from different organic substrates with selected hydrogen production bacteria. Proc. of the 7th IAWQ Asia-Pacific Regional Conference, Taipei, Taiwan, 1, 759-764.
Choo, K. H. and C. H. Lee. 1996. Membrane fouling mechanism in the membrane-coupled anaerobic bioreactor. Water Res. 30: 1771-1780.
Choo, K. H. and C. H. Lee. 1996. Hydrodynamic behavior of anaerobic biosolids during crossflow filtration in the membrane anaerobic bioreactor. Water Res. 33: 3387-3397.
Costello, D. J., P. F. Greenfield, P. L. Lee. 1991. Dynamic modeling of a single-stade high-rate anaerobic reactor—I. Model derivation. Wat. Res. 25. 7. pp.847-858.
Dabrock, B., H. Bahl and G. Gottschalk. 1992. Parameters affecting solvent production by Clostridium pasteuriamun. Appl. Environ. Microbiol. 58: 1233-1239.
Das, D., and T. N. Veziroglu. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy. 26: 13-28.
Desvaux, M., E. Guedon, and H. Petitdemange. 2000. Cellulose catabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Appl. Environ. Microbiol. 66:2461-2470.
Desvaux, M., E. Guedon, and H. Petitdemange. 2001. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiology. 147: 1461-1471.
Fabiano, B., and P. Perego. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 27: 149-156.
Fang, H. H. P., T. Zhang, and H. Liu. 2002. Miccrobial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58: 112-118.
Fang, H. H. P., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng. 78: 44-52.
Fang, H. H., and H. Liu. 2002. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82: 87-93.
Gibson, A. M., R. C. L. Ellis-Brownlee, M. E. Cahill, E. A. Szabo, G. C. Fletcher and P. J. Bremer. 2000. The effect of 100% CO2 on the growth of nonproteolytic Clostridium botulinum at chill temperature. Int. J. Food Microbiol. 54: 39-48.
Ghirardi, M.L., L. Zhang, J.W. Lee, T. Flynn, M. Seibert, E. Greenbaum and A. Melis. 2000. Microalgae: a green source of renewable H2. Trends Biotechnol. 18. pp. 506–511.
Girbal, L., and P. Soucaille. 1994. Regulation of Clostridium acetobutylicum metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J. Bacteriol. 176: 6433-6438.
Girbal, L., I. Vasconcelos, and P. Soucille. 1994. Transmembrane pH of Clostridium acetobutylicum is inverted (more acidic inside) when the in vivo activity of hydrogenase is decreased. J. Bacteriol. 176: 6146-6147.
Girbal, L., C. Croux, I. Vasconcelos and P. Soucaille. 1995. Regulation of metabolism shifts in Clostridium acetobutylicum ATCC 824. FEMS Microbiol. Rev., 17, pp.287-297.
Gottschalk, G., and S. Peinemann. 1992. The anaerobic way of life. In: Prokaryote. A. Balows, H. G. Turper, M. Dworkin, W. Harder, & K. H. Schleifer, (eds). Vol. 1. Springer-Verlag, New York. pp. 300-311
Guerrero, L., F. Pmil, R. Mendez, and J. M. Lema. 1999. Anaerobic hydrolysis and acidogenesis of wastewaters from food industries with high content of organic solid and protein. Wat. Res. 33: 3281-3290.
Guwy, A. J., F. R. Hawkes, D. L. Hawkes and A. G. Rozzi. 1997. Hydrogen production in a high rate fluidized bed anaerobic digester. Wat. Res. 31. 6. pp. 1291-1298.
Han, S. K. and H. S. Shin. 2004. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy. 29: 569-577.
Harper, S. R. and F. G. Pohland. 1985. Recent developments in hydrogen management during anaerobic biological wastewater treatment. Biotechnology and Bioengineering. 28: 585-602.
Herbert, D., P. J. Philipps., and R. E. Strange. 1971. Carbohydrate analysis. Methods Enzymol. 5B: 265-277.
Heuer, H. M. Kresk, P. Baker, K. Smalla, and E. M. H. Wellington. 1997. Analysis of Actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.
Husain, H. and P. Cote. 1999. The zeno experience with membrane bioreactor for municipal wastewater treatment. 2nd Symposium on Membrane Bioreactors for Wastewater Treatment. Crandfield, Bedfordshire, UK.
Hawkes, F. R., R. Dinsdale, D. L. Hawkes, I. Hussy. 2002. Sustainable fermentative hydrogen production: challenges for process optimization. International Journal of Hydrogen Energy. 27:1339-1347.
Inanc, B., S. Matsui and S. Ide. 1996. Propionic acid accumulation and controlling factors in anaerobic treatment of carbohydrate: effects of H2 and pH. Wat. Sci. Tech. 34. 5-6: 317-325.
Inanc, B., S. Matsui and S. Ide. 1999. Propionic acid accumulation in anaerobic digestion of carbohydrate: an investigation on the role of hydrogen gas. Wat. Sci. Tech. 40. 1: 93-100.
Isabel, V., L. Girbal, and P. Soucailie. 1994. Regulation of Carbon and Electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Junelles, A. M., R. Janati-Idrissi, H. Petitdemange, and R. Gay. 1988. Iron effect on acetone butanol fermentation. Curr. Microbiol. 17: 299-303.
Kakuno, T., N. O. Kaplan, and M. D. Kamen. 1997. Chromatium hydrogenase. ,Proc. Natl. Acad. Sci. USA., 74:861-863.
Kashket, E. R., and Z. Y. Cao. 1995.Clostridial strain degeneration., FEMS Microbiol. Rev. 17: 307-315.
Kataoka, N., A. Miya., and K. Kiriyama. 1997. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria., Proc. of the 8th International Conference on anaerobic digestion. 2. 383-390.
Kawakatsu, T., S. I. Nakao, and S. Kimura. 1993.Effects of size and compressibility of suspended particles and surface pore size of membrane on flux in crossflow filtration., J. Membrane. Sci. 81: 173-179.
Khanal, S. K., W. H. Chen, L. Li and S. Sung. 2004. International Journal of Hydrogen Energy. 29: 1123-1131.
Kim, J. O. and I. Somiya. 2001. Efect of hydraulic loading rate on acidogenesis in a membrane-coupled anaerobic VFAs fermenter., Environmental Technology. 22: 91-99.
Kumar, A., S. R. Jain., C. B. Sharma., A. P. Joshi., and V. C. Kalia. 1995. Increased H2 production by immobilized microorganisms. World J. Microbiol. Biotechnol., 11: 156-159.
Kusel, K., H. C. Pinkare, H. L. Drake, and R. Devereux. 1999. Acetogenic and Sulfate-Reducing Bacteria Inhabiting the Rhizoplane and Deep Cortex Cells of the Sea Grass Halodule wrightii. Appl. Environ. Microbiol. 65: 5117-5123.
Lane, D. J. 1991.16S/23S rRNA squencing. In: Nucleic Acid Techniques in Bacterial Systematics., Stackebrandt, E., Goodfellow, M. (eds.), John Wiley and sons, New York., pp. 115-175.
Lay, J. J., Y. Y. Li, and T. Noike. 1998. The influence of pH and ammonia concentration on the methane production in high-solids digestion processes., Water Environ. Res. 70: 1075-1082.
Lay, J. J., Y. J. Lee, and T. Noike. 1999. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Wat. Res. 11: 2579-2586.
Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting stach to hydrogen. Biotechnol Bioeng. 68: 269-278.
Lee, Y. J., T. Miyahara, and T. Noike. 1999. Effect of pH on the microbial hydrogen fermentation. In: Proceedings of the 6th IAWQ Asian-Pacific Conference. Taipei. 215-220.
Lee, Y. J., T. Miyahara, and T. Noike. 2001. Effect of iron concentration on hydrogen fermentation. Bioresour Technol. 80: 227-231.
Liu, R., X. Huang, C. Wang, L. Chen, and Y. Qian. 2000. Study on hydraulic characteristics in a submerged membrane bioreactor process. Process Biochemistry. 36: 249-254.
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001. Enhanced hydrogen production by hollow fiber pervaporation membrane in the anaerobic hydrogen fermenter. 第26屆廢水處理研討會論文摘要集, 1-77。
Liang, T. M., S. S. Cheng, and K. L. Wu. 2001. Hydrogen production from chloroform inhibited granular sludge degrading organics substrate. 第26屆廢水處理研討會論文摘要集, 1-78。
Lovitt, R. W., G. J. Shen, and J. G. Zeikus. 1988. Ethanol production by
thermophilic bacteria: biochemical basis for ethanol and hydrogen tolerance in Clostridium thermohydrosulfuricum. J. Bacteriol. 170: 2809-2815.
Lu, S. Y., C. P. Chiu, and H. Y. Huang. 2000. Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membrane. J. Membrane Sci. 176: 159-167.
Mathews, C. K., K. E. van Holde, and K. G. Ahern. 1999. Biochemistry. Third edition. Addition Wesley Longman.
McCarty, P. L., and R. E. McKinney. 1961. Salt toxicity in anaerobic digestion. J. Water Pollut. Control Fed. 39: 399.
McCarty, P. L. 1964. Anaerobic Waste Treatment Fundamentals III. Public Works. 95: 91.
McCarty, P. L. and F. E. Mosey. 1991. Modelling of anaerobic digestion processes (a discussion of concepts). Wat. Sci. Tech. 24. 8: 17-33.
Miller G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31. 3: 426-428.
Miyake, J. 1998. Biohydrogen. Zaborsky et al. (eds), Plenum Press, New York.
Mizuno, O., R. Dinsdale, F. R. Hawkes, D. L. Hawkes, and T. Noike. 2000. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol. 73: 59-65.
Montville, T. J., N. Parris, and L. K. Conway. 1985. Influence of pH on organic acid production by Clostridium sporogenes in test tube and fermentor cultures. Appl. Environ. Microbiol. 49:733-736.
Mosey F. E. 1983. Mathematical modeling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Wat. Sci. Tech. 15. pp. 209-232.
Mulder, M. 1991. Characterization of membranes in: Basic Principles of Membrane Technology. Marcel Mulder, Kluwer Academic Publishers.
Nandi, R. and S. Sengupta. 1998. Microbial production of hydrogen: an overview. Critical reviews in microbiology. 24. 1: 61-84.
Nisman, B. 1954. The stickland reaction. Bacteriol. Rev. 18: 16-42.
Nochur, S. V., A. L. Demain, and M. F. Roberts. 1992. Carbohydrate utilization by Clostridium thermocellum: importance of internal pH in regulating growth. Enzyme Microb. Technol. 14: 338-349.
Onodera, H., T. Miyahara, and T. Nokie. 1999. Influence of ammonia concentration on hydrogen transformation of sucrose. Proc. of 7th IWQA. 1139-1144.
Owen, W. F., D. C. Stuckey, Jr., J. B. Herly, L. Y. Young, and P. L. McCarty. 1979. Bioassay for Monitoring Biochemical Methane Potential and Anaerobic Toxicity. Wat. Res. 13: 485-492.
Parameshwaran, K., and C. Visvanathan. 1998. Conference proceedings of Advanced Wastewater Treatment, Recyling and Reuse. 1, 509-516, Fiera Milano, Italy
Palazzi, E., B. Fabiano, and P. Perego. 2000. Process denelopment of continuous hydrogen production by Enterobacter aerogenes in a packed column reactor. Bioprocess Eng. 22: 205 – 213.
Payot S., E. Guedon, E. Gelhaye, H. Petitdemange. 1999. Induction of lactate production associated with a decrease in NADH cell content enables growth resumption of Clostridium cellulolyticum in batch cultures on cellobiose. Res. Microbiol. 150: 465-473.
Peguin, S., and P. Soucaille. 1995. Modulation of carbon and electron flow in Clostridium acetobutylicum by iron limitation and methyl viologen addition. Appl. Environ. Microbiol. 61: 403-405.
Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenase. Current Opinion in Structural Biology. 9: 670-676.
Riesner D., G. Steger, R. Zimmat, R. A. Owens, M. Wagenhofer, W.Hillen, S. Vollbach and K. Henco. 1989. Temperatuer-gradient gel electrophoresis of nucleic acids: analysis of conformational transitions, sequence variations, and protein-nucleic acid interactions. Electrophoresis. 10: 377-389.
Ruzicka, M. 1996. The effect of hydrogen on acidogenic glucose cleavage. Wat. Res. 30: 2447-2451
Russotti, G. and K. E. Göklen. 2001. Crossflow membrane filtration of fermentation broth. Membrane separations in biotechnology. 2nd edition. Marcel Dekker, Inc. New York. pp. 148-151.
Sano, T., S. Ejiri, K. Yamada, and Y. Kawakami. 1997. Separation of acetic acid-water mixtures by pervation through silicalite membrane. J. Membrane Sci. 123: 225-233.
Sans, C., J. M. Alvarez, F. Cecchi, P. Pavan 1995. Acidogenic fermentation of organic urban wastes in a plug-flow reactor under thermophilic conditions. Biore. Technol. 54: 105-110.
Schoenheit, P., A. Brandis, and R. K. Thauer. 1979. Ferredoxin degradation in growing Clostridium pasteuriamun during periods of iron deprivation. Arch. Microbiol. 120: 73-76.
Schuster, K. C., and R. van den Heuvel. 1998. Development of markers for product formation and cell cycle in batch cultivation of Clostridium acetobutylicum ATCC 824. Appl. Microbiol. Biotechnol. 49: 669 – 676.
Schwartz, R. D., and F. A. Keller. 1982. Acetic acid production by Clostridium thermoacetium in pH-controlled batch fermentations at acidic pH. Appl. Environ. Microbiol. 43: 1385-1392.
Seeliger, S., P. H. Janssen and B. Schink. 2002. Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or aceylyl-CoA. FEMS Microbiology Letters 211: 65-70.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. 1993. Amino acid transport in the thermophilic anaerobic Clostridium fervidus is driven by an electrochemical sodium gradient. J. Bacteriol. 175: 2060-2066.
Speelmans, G., B. Poolman, T. Abee, and W. N. Konings. 1993. Energy
transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA . 90: 7975-7979.
Solomon, B. O., A. P. Zeng, H. Biebl, H. Schlieker, C. Posten, and W. D. Deckwer. 1995. Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella pneumoniae and Clostridium butyricum during anaerobic growth on glycerol.. J. Biotechnol. 39: 107-117.
Sridhar, J., M. A. Eiteman, and J. W. Wiegel. 2000. Elucidation of enzymes in fermentation pathway used by Clostridium thermosuccinogenes growing on inulin. Appl. Environ. Microbiol. 66: 246-251.
Sterling, Jr, M. C., R. E. Lacey, C. R. Engler, and S. C. Riche. 2001. Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresource Technology. 77: 9-18.
Stephenson, T., S. Judd, B. Jefferson, and K. Brindle. 2000. Membrane bioreactors for wastewater treatment. 1st ed., IWA, London.
Sylvie, S. A., L. Girbal., J. Andrade, K. Ahrens, and P. Soucaille. 2001. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J. Bacteriol. 183. 1748-1754.
Swamy M. V. and G. Seenayya, 1996. Thermostable pullulanase and α-amylase activity from Clostridium thermosulfurogenes SV9—optimization of culture condition for enzyme production. Pro. Biochem. 31. 2: 157-162.
Taguchi, F., N. Mizukami, K. Hasegawa, T. Saito-taki and M. Morimoto, 1994. Effect of amylase accumulation on hydrogen production by Clostridium beijerinckii, Strain AM21B, J. of fermentation and bioengineering. 77. 5:565-567.
Taguchi, F., N. Mizukami, T. Saito-Takio, and K. Hasrgawa. 1995. Hydrogen production from continuous fermentation of xylose during growth of Clostridium sp. strain No 2. Canadian Journal of Microbiology. 41: 536-540.
Talabardon, M., J. P. Schwitzguebel, and P. Peringer. 2000. Anaerobic thermophilic fermentation for acetic acid production from milk permeate. J. Biotechnol. 76: 83-92.
Tamagnini P., Axelsson R., Lindberg P., Oxelfelt F., Wunschiers R., Lindblad P. 2002. Hydrogenases and hydrogen metabolism in cyanobacteria. Microbiol. Mol. Biol. Rev. 66:1–20.
Tanaka, K. 1995. Anaerobic degradation of 3-hydroxypropanoate by a newly isolated Clostridium sp. Journal of fermentation and bioengineering. 79. 5:503-505.
Tanisho, S., N. Wakao, and Y. Kosako. 1983. Biological hydrogen production by Enterobacter aerogenes. Int. J. Hydrogen Energy. 16: 529-530.
Tanisho, S., N. Kamiya, and N. Wakao. 1989. Hydrogen evolution of Enterobacter aerogen depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica. et. Biophysica. Acta. 973: 1-6.
Tanisho, S., and Y. Ishiwata. 1994. Continuous hydrogen production from molasses by the bacterium Enterobacter aerogen. Int. J. Hydrogen Energy. 19: 807-812.
Tanisho, S., M. Kuromoto, and N. Kadokura. 1998. Effect of CO2 removal on hydrogen production by fermentation. Int. J. Hydrogen Energy. 23: 559-563.
Tardieu, E, A. Grasmick, V. Geaugey, and J. Manem. 1998. Hydrodynamic control of bioparticle deposition in a MBR applied to wastewater treatment. J. Membrane Sci. 147: 1-12
Tardieu, E, A. Grasmick, V. Geaugey, and J. Manem. 1999. Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment. J. Membrane Sci. 156: 131-140.
Tatsumi, H., K. Takagi, M. Fujita, K. Kano and T. Ikeda. 1999. Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Analytical Chemistry. 71. 9:1753-1759.
Terracciano, J. S., W. J. A. Schreurs, and E. R. Kashket. 1987. Membrance H+ conductance of Clostridium thermoaceticum and Clostridium acetobutylicum: evidence for electrogenic Na+/H+ antiport in Clostridium thermoaceticum. Appl. Environ. Microbiol. 53:782-786.
Vignais, P. M., B. Bernard, and M. Jacques. 2001. Classification and phylogeny of hydrogenases. FEMS Microbiol. Rev. 25: 455-501
Ueda, T. and K. Hata. 1999. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Wat. Res. 33: 2888-2892.
Ueno, Y.,T. Kawai, S. Sato, S. Otsuka, and M. Morimoto. 1995. Biological production of hydrogen from cellulose by natural anaerobic microflora. Journal of Fermentation and Bioengineering. 79: 395-397.
Ueno, Y., S. Otauka, and M. Morimoto. 1996. Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. Journal of Fermentation and Bioengineering. 82: 194-197.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl. Microbiol. Biotechnol. 57: 555-562.
Ugwuanyi J. O., L. M. Harvey, B. McNeil, 2003. Development of thermophilic populations, amylase and cellulose enzyme activities during thermophilic aerobic digestion of model agriculture waste slurry. Process Biochem. Paper in press.
Vasconcelos, I., L. Girbal, and P. Soucaille. 1994. Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J. Bacteriol. 176: 1443-1450.
Vavilin V. A., V. B. Vasiliev, A. V. Ponomarev and S. V. Rytow. 1994. Simulation model ‘METHANE’ as a tool for effective biogas production during anaerobic conversion of complex organic matter. Bioresource Technology. 48: 1-8.
Vavilin V. A., S. V. Roytow, L. Ya. Lokshina. 1995. Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Bioresource Technology. 54: 171-177.
Wang, G., and D. I. C. Wang. 1984. Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum. Appl. Environ. Microbiol. 47:294-298.
Wen, C., X. Huang, and Y. Qian. 1999. Domestic wastewater treatment using an aerobic bioreactor coupled with membrane filtration. Process Biochemistry, 35: 335-340.
Weber S., S. Stubner, and R. Conrad. 2001. Bacterial Populations Colonizing and Degrading Rice Straw in Anoxic Paddy Soil. Appl. Environ. Microbiol. 67: 1318-1327.
Wiegel, J. 1992. Thermophilic bacteria. J. K. Kristjansson, (eds.). p.p. 110 – 113.
Wisniewski, C., A. L. Cruz., and A. Grasmick. 1999. Kinetics of organic carbon removal by a mixed culture in a membrane bioreactor. Biochemical Engineering Journal. 3: 61-69.
Witjitra, K., M. M. Shah, and M. Cheryan. 1996. Effect of nutrient sources on growth and acetate production by Clostridium thermoaceticum. Enzyme Microb. Technol. 19: 322-327.
Yang, H., and H.L. Drake. 1990. Differential effects of sodium on hydrogen- and
glucose-dependent growth of the acetogenic bacterium Acetogenium kivui. Appl. Environ. Microbiol. 56:81-86.
Yanagi, C., M, Sato, and Y. Takahara. 1994 Treatment of wheat starch waste water by a membrane conbined two phase methane fermentation system. Desalination. 98: 161-170.
Yokoi, H., T. Ohkawa, J. Hirosse, S. Hayashi, and Y. Takasaki. 1995. Characteristics of hydrogen production by acid uric Enterobacter aerogen strain HO-39. Journal of Fermentation and Bioengineering. 80: 571-574
Yokoi, H., A. Saitsu, H. Uchida, J. Hirose, S. Hayashi and Y. Takasaki. 2001. Microbial hydrogen production from sweet potato starch residue. Journal of bioscience and bioengineering. 91. 1: 58-63.
Yu, H. Q., and H. H. P. Fang. 2000. Thermophilic acidification of dairy wastewater. Appl. Microbiol. Biotechnol. 54: 439-444.
Zehnder, A. J. B. 1988. Biology of Anaerobic Microorganisms. John Wiley & sons, Inc. New York. pp.373-413.
Zellner, G., F. Neudörfer and H. Diekmann. 1994. Degradation of lactate by an anaerobic mixed culture in a fluidized-bed reactor. Wat. Res. 28. 6: 1337-1340.
Zhang, T., H. Liu and H. H. P. Fang. 2003. Biohydrogen production from starch in wastewater under thermophilic condition. Journal of Environmental Management 69:149-156.
Zhu, Y. and S. T. Yang. 2004. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricum. Journal of Biotechnology. 110: 143-157.
Zinder, S. H. 1993. Physiological Ecology of Methanogens. J. G. Ferry, (eds). CHAPMAN & HALL. New York. London. pp. 152.
Zoetemeyer R. J., J. C. VAN DEN Heuvel and A. Cohen. 1982.pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 16: 303-311.
Zwietering, M.H., Jongenburger, I., Rombouts, F.M. and Van’t Riet, K. 1990. Modeling of bacteria growth curve. Appl. Environ. Microbio. 56(6) pp.1875-1881.