| 研究生: |
王友亮 Wang, Amos |
|---|---|
| 論文名稱: |
應用建築圖形元件於工程專案排程之研究 The Study of Applying Building Graphic Components to Scheduling Construction Projects |
| 指導教授: |
馮重偉
Feng, Chung-Wei, |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | 建築元件庫 、多維度物件模型 、專案排程 、物件導向 |
| 外文關鍵詞: | object-oriented, building components library, multi-dimension model, project schedule |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
目前專案排程的規劃在研究或實做上,大都是利用分工結構圖來解釋專案所需的作業,並以作業為導向來描述整個施工流程,然而在施工階段專案的管理卻是依合約項目來掌控,此與時間為基準的作業排程並不能直接相切合,導致排程進度無法確實呈現工地之情形,所以工程專案往往都未能遵行規劃之排程。目前應用於專案排程上的4D模式,雖能使圖形元件結合時間作為描述排程進度的方式,然而其排程並非來自於圖形元件所產生的施工資訊,因此建立的圖形元件仍未能成為作業與合約項目資訊轉換的依據。
本研究利用物件導向的概念,建立建築元件庫及樣版屬性,透過建築圖檔的解析產生所需的3D圖形元件與施工屬性,此即為多維度物件模型。將多維度物件模型的工作項目,配合分包商的工組工率產生各工作項目所需的工期,加上施工方法對元件與工作項目定義的施作程序,使工作項目具備時間、空間與施工順序三要素,導入排程中利用要徑法來求出專案之工期。由於使用工作項目作為排程的優勢在於能提供量化的數據作為進度計算的依據,能確實描述專案的施工情形。因此,本研究根據此排程模式開發一套專案排程系統(Project scheduling system , PSS)。
此外,本研究以建築專案之主體結構進行驗證,根據案例驗證之結果顯示,利用多維度物件模型的建立與PSS在排程上的應用,由於排程的結果與工程圖檔息息相關,因此透過排程與3D圖形元件的連結,可以使專案管理者能更清楚地掌握施工之進度。其次,對於工地管理者而言,由建築元件所提供的材料種類與數量,配合工組的人力與機具設備產生資源排程計畫,將使資源能被有效的掌控。因此,本研究所提出之排程模式及PSS的應用,確實能使管理者獲得更有效且詳細的排程資訊,配合 建築元件庫的擴充與施工資訊的收集,將可不斷地提升此排程系統所帶來的效益。
ABSTRACT
Currently, the project schedule, either in the academic study or in the practical field, applies the work breakdown structure to describe activities required. However, during the construction stage, the project is mainly executed according to contractual items. This causes the discrepancy between the progress predicted by the project schedule and the actual progress. Present 4D models combined the project schedule with graphic components to give a more realistic presentation. However, because the project schedule is not developed according to the contractual information, the 4D model can not effectively link the information between the contractual items and activities.
This research uses the object-oriented concept to build a building component library which is generated by analyzing the information given from the construction process to provide the necessary 3D graphic components. A so-called multi-dimensional model (MD model) which combines the graphic components and contractual items is developed based on the building component library. From the multi-dimensional model, various work items are given time, space and construction sequence. These properties determined by the sub contractors’ work crew productivity, the method of construction, and the definition of work items. And then MD components are employed with the critical path method to generate a more realistic project schedule.
The advantage of this processed model is that it can produce the quantitative account of the project progress thus accurately describes the construction process undertaken. In addition, a Project Scheduling System (PSS) is developed, based on the above model. To verify the proposed model, a case study is conducted based on the main structure of a residential building, result shows that model enables the project manager to have a clearer picture of the construction progress. For the site manager, the resource schedule produced from the proposed model gives more detailed information on amount and types of building materials, work crew and equipment, thus allows the manager to perform his task more effectively and accurately.
英文部分:
1. Hegazy, T., Zaneldin, E., and Grierson, D. (2001). ”Improving design coordination for building project. I: Information model.” Construction engineering and management, Vol. 127, pp. 330-336.
2. Zaneldin, E., Hegazy, T., and Grierson, D. (2001). ”Improving design coordination for building project. II: A collaborative system.” Construction engineering and management, Vol. 127, pp. 322-329.
3. Koo, B., and Fischer, M. (2000). ”Feasibility study of 4D in commercial construction.” Construction engineering and management, Vol. 126, pp. 251-260.
4. Fischer, M., and Liston, K.M., “Wish List for 4D environments: A WDI R&D Perspective.” [online] Available at:<URL:http://www.stanford.edu/group/4D/issues/wishlist.shtml>.
5. Dharwadkar, P.V., and Gatton, T.M. (1995). ”An object-oriented building model for CAD/schedule integration.” Computing in civil engineering, Vol. 2, pp.1248-1251.
6. Dawood, N., Sriprasert, E., Mallasi, Z., and Hobbs , B. (2002). ”Development of an integrated information resource base for 4D/VR construction processes simulation.” Automation in Construction, Vol. 12, pp. 123-131.
7. Wang, H.J., Zhang, J.P., Chau, K.W., and Anson, M. (2004). “4D dynamic management for construction planning and resource utilization.” Automation in construction, Vol. 13, pp. 575-589.
8. Lammer, L., Meiβner, U., and Peterson, M. (2001). ”Object-oriented integration of construction and simulation models.” Computers and structures, Vol. 79, pp. 2143-2149.
9. Underwood, J. , Alshawi, M.A., Aouad, G., Child, T., and Faraj, I.Z. (2000). ”Enhancing building product libraries to enable the dynamic definition of design element specifications.” Construction and Architectural Management, Vol. 7, pp. 373-388.
10. Burcu Akinci and M. Fischer (1998). “Time-space conflict analysis based on 4D production models.” Computing in Civil Engineering, pp. 342-353.
11. Laudon, K. C., and Laudon, J. P. (2004). “Management Information Systems.” Pearson Education, Inc.
中文部分:
1. 葉怡成,電腦在營建管理上的應用,松崗,台北,1996。
2. 李清安,初學 AutoLISP 入門 :/參數化繪圖模板設計,第三波發行,台北,1995。
3. 藍屹生,AutoLISP學習導引,碁峰資訊股份有限公司,台北,2002。
4. 吳永進、林美櫻,AutoCAD 程式設計魔法書 AutoLISP 與 DCL 基礎篇,知城數位科技公司,台北,2002。
5. 吳永進、林美櫻,AutoCAD 程式設計魔法書 Visual LISP精選範例篇,知城數位科技公司,台北,2003。
6. 林龍震,AutoCAD 建築設計2004,金禾資訊,台北,2003。
7. 林金面,施工估價,文笙書局股份有限公司,台北,2004。
8. 中國土木水利工程學會,混凝土工程設計規範與解說,科技圖書股份有限公司,台北,1998。
9. 許進標,Microsoft Project 2002 高手攻略,碁峰資訊股份有限公司,台北,2002。
10. 位元文化,Access 2002 程式設計- VBA、SQL、ADO、ActiveX與系統開發實務,文魁資訊股份有限公司,台北,2001。