| 研究生: |
趙家群 Zhao, Jia-Qun |
|---|---|
| 論文名稱: |
產生雙波長與脈衝特性的圓柱向量光束 Generation of dual-wavelength and pulsed cylindrical vector beams |
| 指導教授: |
魏明達
Wei, Ming-Dar |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 雙波長 、脈衝 、圓柱向量光束 |
| 外文關鍵詞: | dual-wavelength, pulse, cylindrical vector beam |
| 相關次數: | 點閱:118 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究泵源焦點聚焦在擴散接合晶體不同位置時,輸出雷射的特性變化。過往研究大部分都專注於討論接合處的雙波長特性,沒進一步去討論每個位置的細微分布,實驗中可以發現因為〖Nd:GdVO〗_4與〖Nd:YVO〗_4晶體的本身材料特性不同,因此在改變泵源功率時在不同位置上會激發出不同的波長分布,進一步討論其中雙波長的相位、強度變化。在鎖模的部分,將一般輸出耦合鏡換成具飽和吸收體特性的輸出耦合鏡,藉此來產生脈衝雷射,焦點在擴散接合晶體中的〖Nd:GdVO〗_4的臨界功率會比〖Nd:YVO〗_4來得低、鎖模品質、穩定性也較好,較有機會產生連續波鎖模(CWML),此外將共振腔的腔長操作在穩定區邊界,藉由晶體的雙折射效應,產生徑向偏振(radial polarization)的圓柱向量光束。
In this thesis, we studied the generation of different wavelengths and mode-locked distributions by focusing the pumping source on different locations of the diffusion-bonded crystal. When focusing on 〖Nd:GdVO〗_4 of the diffusion bonded crystal, single wavelength of 1065 nm was generated. However, when focusing on 〖Nd:YVO〗_4 of the diffusion bonded crystal, single wavelength of 1066 nm was generated. If the focal point was at the junction of the diffusion bonding crystal, dual-wavelength would be generated. Furthermore, we discussed the phase change and the intensity variation of this dual wavelength output. In the part of the mode-locking, replacing the general output coupler with a saturable output coupler to generate pulsed laser. The mode locking quality, stability on the 〖Nd:GdVO〗_4 in the diffusion bonded crystal is better than that of the 〖Nd:YVO〗_4. Due to the birefringence of the diffusion-bonded crystal , the e-ray and o-ray could be separated. Therefore, radially-polarized light was able to be generated at specific cavity length.
[1]C. Bethea, "Megawatt power at 1.318 µ in Nd^(3+): YAG and simultaneous oscillation at both 1.06 and 1.318 µ," IEEE Journal of Quantum Electronics 9, 254-254 (1973).
[2]P. Li, D. Li, C. Li, and Z. Zhang, "Simultaneous dual-wavelength continuous wave laser operation at 1.06 μm and 946 nm in Nd:YAG and their frequency doubling," Optics Communications 235, 169-174 (2004).
[3]K. Lünstedt, N. Pavel, K. Petermann, and G. Huber, "Continuous-wave simultaneous dual-wavelength operation at 912 nm and 1063 nm in 〖Nd:GdVO〗_4," Applied Physics B 86, 65-70 (2006).
[4]Y.-F. Chen, "cw dual-wavelength operation of a diode-end-pumped Nd: YVO4 laser," Applied Physics B 70, 475-478 (2000).
[5]Z. Lin, Y. Wang, B. Xu, H. Xu, and Z. Cai, "Diode-pumped simultaneous multi-wavelength linearly polarized Nd:YVO4laser at 1062, 1064 and 1066 nm," Laser Physics 26, 015801 (2016).
[6]B. Wu, P. Jiang, D. Yang, T. Chen, J. Kong, and Y. Shen, "Compact dual-wavelength 〖Nd:GdVO〗_4 laser working at 1063 and 1065 nm," Optics express 17, 6004-6009 (2009).
[7]Y. J. Huang, H. H. Cho, Y. S. Tzeng, H. C. Liang, K. W. Su, and Y. F. Chen, "Efficient dual-wavelength diode-end-pumped laser with a diffusion-bonded 〖Nd:YVO〗_4/〖Nd:GdVO〗_4 crystal," Optical Materials Express 5, 2136 (2015).
[8]Y.-J. Huang, H.-H. Cho, K.-W. Su, and Y.-F. Chen, "Exploring a diffusion-bonded 〖Nd:YVO〗_4/〖Nd:GdVO〗_4 crystal for generating an efficient diode-end-pumped dual-spectral-band laser," in Advanced Solid State Lasers, (Optical Society of America, 2015), ATu1A. 7.
[9]Y. J. Huang, Y. S. Tzeng, C. Y. Tang, S. Y. Chiang, H. C. Liang, and Y. F. Chen, "Efficient high-power terahertz beating in a dual-wavelength synchronously mode-locked laser with dual gain media," Optics letters 39, 1477-1480 (2014).
[10]Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics 1, 1 (2009).
[11]D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Applied Physics Letters 20, 266-267 (1972).
[12]Y. Zhao, Q. Zhan, Y. Zhang, and Y.-P. Li, "Creation of a three-dimensional optical chain for controllable particle delivery," Optics letters 30, 848-850 (2005).
[13]Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Optics express 12, 3377-3382 (2004).
[14]Q. Zhan and J. R. Leger, "Microellipsometer with radial symmetry," Applied optics 41, 4630-4637 (2002).
[15]Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Optics letters 30, 3063-3065 (2005).
[16]K. C. Chang, T. Lin, and M. D. Wei, "Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon," Optics express 21, 16035-16042 (2013).
[17]M. A. Ahmed, A. Voss, M. M. Vogel, and T. Graf, "Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers," Optics letters 32, 3272-3274 (2007).
[18]J.-l. Li, K.-i. Ueda, L.-x. Zhong, M. Musha, A. Shirakawa, and T. Sato, "Efficient excitations of radially and azimuthally polarized Nd 3+: YAG ceramic microchip laser by use of subwavelength multilayer concentric gratings composed of Nb_2 O_5/SiO_2" Optics express 16, 10841-10848 (2008).
[19]S. C. Tidwell, D. H. Ford, and W. D. Kimura, "Generating radially polarized beams interferometrically," Applied Optics 29, 2234-2239 (1990).
[20] M. Stalder and M. Schadt, "Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters," Optics letters 21, 1948-1950 (1996).
[21]G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, "Efficient extracavity generation of radially and azimuthally polarized beams," Optics letters 32, 1468-1470 (2007).
[22]H. Y. Ryu, H. S. Moon, and H. S. Suh, "Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding," Optics express 15, 11396-11401 (2007).
[23]D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, "Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator," Optics letters 30, 2948-2950 (2005).
[24]B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, "Passive mode locking of a diode-end-pumped 〖Nd:GdVO〗_4 laser with a semiconductor saturable absorber mirror," Optics letters 28, 1829-1831 (2003).
[25]U. Keller, D. Miller, G. Boyd, T. Chiu, J. Ferguson, and M. Asom, "Solid-state low-loss intracavity saturable absorber for Nd: YLF lasers: an antiresonant semiconductor Fabry–Perot saturable absorber," Optics letters 17, 505-507 (1992).
[26]J.-L. Xu, X.-L. Li, Y.-Z. Wu, X.-P. Hao, J.-L. He, and K.-J. Yang, "Graphene saturable absorber mirror for ultra-fast-pulse solid-state laser," Optics letters 36, 1948-1950 (2011).
[27]M. Tsunekane, N. Taguchi, and H. Inaba, "High power operation of diode-end pumped 〖Nd:YVO〗_4 laser using composite rod with undoped end," Electronics letters 32, 40-42 (1996).
[28]M. Tsunekane, N. Taguchi, T. Kasamatsu, and H. Inaba, "Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry," IEEE Journal of Selected Topics in Quantum Electronics 3, 9-18 (1997).
[29]R. Feldman, Y. Shimony, and Z. Burshtein, "Passive Q-switching in Nd:YAG/Cr4+:YAG monolithic microchip laser," Optical Materials 24, 393-399 (2003).
[30]D. G. Hall, "Vector-beam solutions of Maxwell’s wave equation," Optics letters 21, 9-11 (1996).
[31]J. T. Verdeyen, " Laser electronics 3rd " (Prentice Hall Englewood Cliffs, NJ, 1995), Vol. 3.
[32]H. Haus, "Parameter ranges for CW passive mode locking," IEEE journal of Quantum Electronics 12, 169-176 (1976).
[33]S. Namiki, E. P. Ippen, H. A. Haus, and X. Y. Charles, "Energy rate equations for mode-locked lasers," JOSA B 14, 2099-2111 (1997).
[34]C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," JOSA B 16, 46-56 (1999).
校內:2022-07-20公開