| 研究生: |
操佳遠 Tsao, Chia-Yuam |
|---|---|
| 論文名稱: |
微混合器製作二氧化矽奈米顆粒研究 A study on synthesis of silica nanoparticle using micromixer |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系碩士在職專班 Department of Mechanical Engineering (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 二氧化矽 、奈米粒子 、PDMS 、微混合 |
| 外文關鍵詞: | Silic, nanoparticles, PDMS, micromixer |
| 相關次數: | 點閱:96 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用一種新的方式以溶膠-凝膠法搭配高混合效率的PDMS微混合器合成二氧化矽奈米粒子,藉由高效率混合比,提升小尺寸的晶體生成,使奈米粒子趨向更小更均勻,並以掃描式電子顯微鏡(SEM)對於不同製程參數下的奈米粒子進行粒徑尺寸與分佈做有效分析比較。
本研究以溶膠凝膠的參數及製程的變化,分別針對不同TEOS濃度、反應溫度、反應管徑大小、反應時間、不同莫耳濃度氨水以及不同莫耳濃度水的影響等因子做探討。實驗結果顯示,當TEOS的濃度增加、氨水的濃度增加或鐵氟龍反應管徑的減小,會得到較大奈米二氧化矽顆粒,尤其在管徑減小上,可加速得到較大二氧化矽顆粒,此外當反應溫度升高、去離子水量增加,與傳統溶膠-凝膠燒杯作法相比,可抑制其成長得到較小二氧化矽顆粒,實驗結果成功合成二氧化矽奈米粒子平均粒徑約為38-93 nm。
In this thesis, silica nanoparticles were synthesized by the sol - gel method and collocated with high efficiency PDMS micromixer. High efficiency micromixing provides small particles so that the uniformity of size distribution is enhanced, Particle size was analyzed by scanning electron microscopy (SEM).
The study sol-gel process parameters and the changes made the following studies in relationship. between nanoparticles to factors of TEOS concentration, reaction temperature, tube diameter size, reaction time, different concentrations of ammonia and water were discussed. The experiment results showed that larger silica nanoparticles were formed with increasing the concentration of TEOS and ammonia. In addition, reduced reaction tube diameter can quickly produce larger silica nanoparticles. Compared with the sol-gel method in glass, the increase of reaction temperature and amount of deionized water reduced the particle size. The size of silica nanopartilces synthesized by our method is around 38-93 nm.
1.馬振基, “奈米材料科技原理與應用”, 全華科技圖書, (2003)。
2. P. Ball, and L. Garwin, “Science at the Atomic Scale”, Nature Vol 355, pp761, (1992).
3. W. P. Halperin, “Quantum Size Effects in Metal Particles”, Reviews of Modern Physics Vol 58, pp 533, (1986).
4.王惠君, “以回應曲面法探討溶膠-凝膠法製備奈米二氧化矽之參數影響”, 中原大學化學工程學系碩士學位論文, (2004)。
5. J. E. Panels, and Y. L. Joo, “Incorporation of Vanadium Oxide in Silica Nanofiber Mats via Electrospinning and Sol-Gel Synthesis”, Journal of Nanomaterials, pp1, (2006).
6. C. Shao, H. Y. Kim, J. Gong, B. Ding, D. R. Lee, and S. J. Park,“Fiber Mats of Poly(Vinyl Alcohol)/Silica Composite Via Electrospinning”, Materials Letters Vol 57, pp1579, (2003).
7. G. Zhang, W. Kataphinan, and D. H. Reneker, “Electrospun Nanofibers for Potential Space-Based Applications”, Materials Science Engineering B, Vol 116, pp353, (2005).
8. 陳依湘, “環氧樹酯/二氧化矽混成材料之製備及其在金屬防蝕上之應用研究”, 中原大學化學碩士學位論文, (2003)。
9. 吳聖安, “矽氧烷改質奈米級二氧化矽之合成及做為UV塗料添加劑之研究”, 國立嘉義大學林業暨自然資源學系碩士論文, (2005)。
10. 蘇哲慶, “水泥質塗層材料巨/微觀特性之研究”, 國立臺灣海洋大學材料工程學系碩士學位論文, (2003)。
11. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F.Chmelka, G. M Whitesides, and G. D.Stucky,“Hierarchically Ordered Oxides”, Science Vol 282, pp2244, (1998).
12. J. F. Gerald, S. Pennycook, H. Gao, and R. K. Singh, “Synthesis and Properties of Nanofunctionalized Particulate Materials”, NanoStructured Materials Vol 12, pp1167, (1999).
13. Y. Xia, and G. M. Whitesides, “Soft Lithography”, Angewandte Chemie- International Edition Vol 37, pp550, (1998).
14. G. H. Bogush, M. A. Tracy, and C. F. Zukoski IV, “Preparation of Monodisperse Silica Particles: Control of Size and Mass Fraction”, Jonrnal of Non-Crystalline Solids Vol 104, pp95, (1988).
15. K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, and K. Makino, “A novel Method for Synthesis of Silica Nanoparticles,” Journal of Colloid and Interface Science Vol 289, pp125, (2005).
16. L. L. Hench and J. K. West, “The Sol-Gel Process”, Chemical Reviews Vol 90, pp33, (1990).
17. 丁原傑, “化工技術”, 第46卷, 第5期, pp63, (1999)。
18. H. Schroeder, “Physics of Thin Film”, Academic Press, New.York, pp87, (1969).
19. B. Jirgensons, and M. E. Straumains, “A Short Textbook of Colloid Chemistry”, Macmillan, New York, (1962).
20. C. J. Brinker, and G. W. Scherer, “Sol-Gel Science:The physics and Chemistry of Sol-Gel Processing”, Academic Press, New York, pp102, (1990).
21. T. Satoh, M. Akitaya, M. Konno, and S. Saito, “Particle Size Distribution Produce by Hydrolysis and Condensation of Tetraethylorthosilicate”, Journal of Chemical Engineering of Japan 30, pp759, (1997).
22. T. Matdoukas, and E. Gulari, “Dynamics of Growth of Slica Particles from Ammonia-Catalyzed Hydrolysis of Tetra-ethyl-orthosilicate”, Jounal of Colloid and Interface Science Vol 124, pp252, (1988).
23. K. D. Kim, and H. T. Kim, “Formation of Silica Nanoparticles by Hydrolysis of TEOS Using a Mixed Semi-Batch/Batch Method”, Journal of Sol-Gel Science and Technology Vol 25, pp183, (2002).
24. K. S. Chou, and C. C. Chen, “Preparation and Characterization of Monodispersed Silica Colloids”, Advances in Technology of Materials and Materials Processing Journal Vol 5, pp31, (2003).
25. C. G. Tan, B. D. Bowen, and N. Epstein, “Production of Monodisperse Colloidal Silica Spheres:Effect of Temperature” , Journal of Colloid and Interface Science Vol 118, pp290, (1987).
26. K. D. Kim, and H. T. Kim, “New Process for the Preparation of Monodispersed, Spherical Silica Particles”, Journal of the American Ceramic Society Vol 85, pp1107, (2002).
27. L. Zhao, J. G. Yu, B. Cheng, and X. J. Zhao, “Preparation and Formation Mechanisms of Monodispersed Silicon Dioxide Spherical Particles”, Ziran Kexueban Vol 61, pp562, (2003).
28. J. D. Verhoeven, “Fundamentals of Physical Metallurgy”, John Wiley & Sons,Inc, pp220, (1975).
29. D. Elwell and H. J. Schell, “Stability and Stirring Crystal Growth from High-Temperature Solutions”, Journal of the Electrochemical Society Vol 120., pp818, (1973).
30. 施廷潤, “微流體元件技術與其在奈米顆粒合成之應用”, 國立成功大學機械工程學系博士學位論文, (2009)。
31. S. K. Park, K. D. Kim, and T. H. Kim, “Preparation of Silica Nanoparticcles:Determination of the Optimal Synthesis Conditions for Small and Uniform Particles”, Colloids and Surfaces A:Physicochemical and Engineering Aspects Vol 197, pp7, (2002).
校內:2015-08-02公開