簡易檢索 / 詳目顯示

研究生: 林毓婷
Lin, Yu-Ting
論文名稱: 以交流電熱流進行分子捕捉並用於促進FRET生物分子檢測
Molecular Trapping by AC Electrothermal Flow and Its Use in Facilitating FRET Probing of Biomolecules
指導教授: 魏憲鴻
Wei, Hsien-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 150
中文關鍵詞: 螢光共振能量轉移(FRET)交流電熱流(ACET)量子點(QD)免疫球蛋白G(IgG)NHS-biotin
外文關鍵詞: FRET, Quantum Dot, AC Electrothermal Flow, Immunoglobulin G(IgG), NHS-biotin
相關次數: 點閱:92下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 螢光共振能量轉移(Fluorescence Resonance Energy Transfer, FRET) 的技術可用來檢測分子間的鍵結與交互作用。然而,於實際FRET檢測時,因待測樣品濃度較稀薄,造成FRET訊號通常很微弱,且需要較長時間才可檢測到訊號,所以本研究透過交流電荷動力學微機電系統來克服這些缺點。本研究使用的方法為利用有修飾streptavidin的奈米量子點(Quantum Dots, QD)作為螢光供體,捕捉目標分子免疫球蛋白G (Immunoglobulin G, IgG)標記Alexa 647作為螢光受體並以NHS biotin來進行修飾,再透過AC電場產生流體流動,使QD和IgG迅速集濃來加速兩者之間的鍵結速度,進而放大FRET訊號且可縮短分子檢測的時間,並提高FRET靈敏度達IgG-NHS biotin濃度至0.1 picoM.。
    本文第三章,本研究使用四角金電極,為了選擇適當頻率進行FRET檢測, 藉由AC電場分別對QD和IgG做掃頻測試,實驗結果顯示,QD和IgG均會在開啟電場後,迅速的由電極四邊往中央被捕捉聚集,而此聚集主要是因使用的溶液為高導電度的buffer,產生導電度主導的交流電熱流(AC Electrothermal, ACET)流動,使QD和IgG迅速的被捕捉聚集在電極中央。
    本文第四章,基於第三章成功利用ACET捕捉QD和IgG後,再以相對應電場條件進行FRET檢測,實驗結果顯示,在開啟電場後,立即在電極中央觀察到明顯的FRET訊號,且當亮度達峰值後,衰減下來的強度仍然明顯的高於背景強度並持續至少10分鐘。然而,也發現到在FRET訊號中,並不完全是因QD-IgG鍵結所形成的FRET訊號,其中可能還會包含些許QD的訊號。儘管如此,FRET靈敏度仍可達 IgG-NHS biotin濃度至0.1 picoM.。
    本文第五章,最主要目的是要利用FRET強度之變化來確認QD-IgG的鍵結,當觀察到FRET訊號後,在電場保持開啟的狀態下注入酵素對IgG進行分解,實驗結果發現,在注入酵素後,FRET訊號會開始逐漸衰減,且與沒有加入酵素的強度相比明顯更弱,可證實在下探濃度後,長時間下的FRET訊號QD-IgG確實有成功鍵結。接著後續再對FRET訊號之淬滅,進一步利用動力學模式來進行分析,可能具有實現更精確的FRET在生物分子上探測的潛力。

    Fluorescence Resonance Energy Transfer (FRET) is a robust technique for probing target molecules. However, because sample concentrations are typically very low, actual FRET signals are often very weak. In this thesis, we develop an AC electrokinetic microdevice to overcome this shortcoming. The approach involves the use of Quantum Dot(QD) as the FRET donor. It is used to probe the target Immunoglobulin G(IgG) labeled with the FRET acceptor Alexa647. We also identify that the observed trapping is due mainly to AC Electrothermal (ACET) flow by intense Joule heating in a high conductivity buffer solution used here. Using this approach, we find that not only can FRET signals be greatly amplified upon the application of an electric field, but also the detection sensitivity can be pushed to as low as 0.1 picoM.

    摘要 i 誌謝 ix 目錄 x 表目錄 xiv 圖目錄 xv 符號說明 xxii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 1 第二章 基本原理 9 2.1螢光共振能量轉移(Florescence Resonance Energy Transfer, FRET) 9 2.2交流電荷動力學(AC Electrokinetics) 10 2.2.1交流電熱流(AC Electrothermal, ACET) 10 2.2.2介電泳(Dielectrophoresis, DEP) 13 2.3免疫球蛋白 (Immunoglobulin, Ig) 的結構與功能 14 2.3.1木瓜蛋白酵素 (Papain)分解免疫球蛋白 (Immunoglobulin) 16 第三章 以交流電場集濃奈米量子點(Quantum Dot, QD)及目標分子免疫球蛋白G (Immunoglobulin G, IgG) 23 3.1 電極設計 23 3.2 奈米量子點(Quantum Dot, QD)掃頻測試 24 3.2.1實驗裝置 24 3.2.2工作溶液 25 3.2.3實驗步驟 26 3.2.4實驗相關細節 27 3.2.5實驗現象與結果討論 28 3.3 免疫球蛋白G (Immunoglobulin G, IgG)掃頻測試 31 3.3.1實驗裝置 31 3.3.2工作溶液 31 3.3.3實驗步驟 34 3.3.4實驗相關細節 34 3.3.5實驗現象與結果討論 35 3.4 ACET於四角金電極中流動及捕捉機制 38 3.5 總結 39 第四章 以交流電場進行FRET分子檢測及靈敏度檢測 50 4.1 以QD作為能量供體進行FRET檢測 51 4.1.1實驗裝置 51 4.1.2工作溶液 51 4.1.3實驗步驟 54 4.1.4實驗相關細節 55 4.1.5實驗現象與結果討論 56 4.2 針對NHS biotin和QD濃度做改善並重新檢測FRET訊號 58 4.2.1實驗裝置 58 4.2.2工作溶液 59 4.2.3實驗步驟 62 4.2.4實驗相關細節 62 4.2.5實驗現象與結果討論 63 A.不同頻率下QD濃度5×10-10 M的聚集及分散行為 63 B.對QD和NHS biotin濃度作改善並重新檢測FRET訊號 67 4.2.6結論 69 4.3 對照組:奈米量子點 (Quantum Dot, QD)與目標分子IgG在無NHS biotin鍵結情況下之FRET檢測 69 4.3.1實驗裝置 70 4.3.2工作溶液 70 4.3.3實驗步驟 71 4.3.4實驗現象與結果討論 71 4.4 不同濃度的IgG-NHS biotin進行FRET靈敏度檢測 72 4.4.1實驗裝置 72 4.4.2工作溶液 73 4.4.3實驗步驟 76 4.4.4實驗相關細節 76 4.4.5實驗現象與結果討論 76 A.FRET訊號與IgG-NHS biotin濃度的關係 76 B.對照組:使用較低濃度的IgG-NHS biotin進行FRET訊號檢驗 77 4.5 總結 78 第五章 利用木瓜蛋白酶 (Papain)專一性分解抗體分子之FRET檢測 91 5.1 利用木瓜蛋白酶(Papain)分解不同濃度的IgG-NHS biotin 91 5.1.1實驗裝置 91 5.1.2工作溶液 93 5.1.3實驗步驟 96 5.1.4實驗相關細節 99 5.1.5實驗現象與結果討論 100 5.2 結論 104 第六章 結論及未來工作 114 參考文獻 116 附錄A 微電極晶片製作 119 A.1 微電極光罩設計 119 A.2 金電極製程 119 A.2.1玻璃基材清洗 119 A.2.2金屬真空蒸鍍 120 A.3 金電極光微影製程(Photolithography) 121 A.3.1晶片清洗 121 A.3.2光阻塗佈及軟烤 121 A.3.3曝光 122 A.3.4顯影 122 A.3.5蝕刻 123 A.3.6去光阻 123 附錄B PDMS微流道製作 127 B.1 微流道光罩設計 127 B.2 微流道光微影製程 127 B.2.1晶片清洗 128 B.2.2塗佈光阻 128 B.2.3軟烤(Soft Baking) 128 B.2.4曝光 129 B.2.5曝後烤 129 B.2.6顯影 130 B.2.7硬烤 130 B.3 微流道模型製作 130 B.4 金電極與微流道系統之整合與組裝 131 B.4.1金電極晶片與外接電路組裝 131 B.4.2 PDMS微流道與外部管線組合 131 B.4.3微流道與微電極組合 132 附錄C 影像拍攝與數據處理 137 C.1 影像擷取參數設定 137 C.1.1曝光時間( Exposure Time ) 137 C.1.2觀測視窗大小( Binning ) 137 C.1.3影像整體視覺亮度( Visual gain ) 137 C.2 影像擷取時間設定 138 C.3 螢光濾片的選擇及使用 138 C.4 螢光强度的静態與動態擷取 139 C.4.1螢光強度的靜態擷取 139 C.4.2螢光強度的動態擷取 139 C.5 FRET相關計算參數設定 140 C.5.1 QD螢光強度的擷取 140 C.5.2 FRET螢光強度擷取 140 C.5.3 FRET相關計算 141 C.5.3.1 FRET背景值 141 C.5.3.2 FRET效率 141 C.5.3.3 FRET出現面積 142 C.5.3.4 FRET總強度 142 C.5.3.5 FRET加權平均強度 142 附錄D 儀器設備使用 149 D.1 100倍油鏡使用 149 D.2氧電漿使用 149

    Adamczyk, M., Gebler, J. C., & Wu, J. 2000 Papain digestion of different mouse IgG subclasses as studied by electrospray mass spectrometry. Journal of immunological methods, 237(1-2), 95-104.
    Clapp, A. R., Goldman, E. R., Uyeda, H. T., Chang, E. L., Whitley, J. L., & Medintz, I. L. 2008 Monitoring of enzymatic proteolysis using self-assembled quantum dot-protein substrate sensors. Journal of Sensors, 2008.
    Cheng, I. F., Han, H. W., & Chang, H. C. 2012 Dielectrophoresis and shear-enhanced sensitivity and selectivity of DNA hybridization for the rapid discrimination of Candida species. Biosensors and Bioelectronics, 33(1), 36-43.
    Crivianu-Gaita, V., Romaschin, A., & Thompson, M. 2015 High efficiency reduction capability for the formation of Fab׳ antibody fragments from F(ab)2 units. Biochemistry and biophysics reports, 2, 23-28.
    Green, N. G., Ramos, A., Gonzalez, A., Morgan, H., & Castellanos, A. 2002 Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. Physical review E, 66(2), 026305.
    Luo, Q., Mao, X., Kong, L., Huang, X., & Zou, H. 2002 High-performance affinity chromatography for characterization of human immunoglobulin G digestion with papain. Journal of Chromatography B, 776(2), 139-147.
    Medintz, I. & Hildebrandt, N. 2014 FRET-Forster Resonance Energy Transfer, Germany:Wiley-VCH, Germany.
    Morgan, H. & Green, N.G. 2003 AC Electrokinetic: colloids and nanoparticles. Baldock, UK: Research Studies.
    Nehilla, B. J., Vu, T. Q., & Desai, T. A. 2005 Stoichiometry-Dependent Formation of Quantum Dot-Antibody Bioconjugates: A Complementary Atomic Force Microscopy and Agarose Gel Electrophoresis Study. The Journal of Physical Chemistry B, 109(44), 20724-20730.
    Pereira, M., & Lai, E. P. 2008 Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. Journal of nanobiotechnology, 6(1), 10.
    Srisa-Art, M., Dyson, E. C., deMello, A. J., & Edel, J. B. 2008 Monitoring of real-time streptavidin−biotin binding kinetics using droplet microfluidics. Analytical chemistry, 80(18), 7063-7067.
    Stryer, L. 1978 Fluorescence energy transfer as a spectroscopic ruler. Annual review of biochemistry, 47(1), 819-846.
    Song, H. N., Kim, D. H., Park, S. G., Lee, M. K., Paek, S. H., & Woo, E. J. 2015 Purification and characterization of Fab fragments with rapid reaction kinetics against myoglobin. Bioscience, biotechnology, and biochemistry, 79(5), 718-724.
    Saraheimo, S., Hepojoki, J., Nurmi, V., Lahtinen, A., Hemmilä, I., Vaheri, A., Vapalahti, O., & Hedman, K. 2013 Time-resolved FRET-based approach for antibody detection–a new serodiagnostic concept. PLoS One, 8(5).
    Vincents, B., Vindebro, R., Abrahamson, M., & von Pawel-Rammingen, U. 2008 The human protease inhibitor cystatin C is an activating cofactor for the streptococcal cysteine protease IdeS. Chemistry & biology, 15(9), 960-968.
    Williams, S. J., Kumar, A., Green, N. G., & Wereley, S. T. 2009 A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. Nanoscale, 1(1), 133-137.
    Wolak, D. J., Pizzo, M. E., & Thorne, R. G. 2015 Probing the extracellular diffusion of antibodies in brain using in vivo integrative optical imaging and ex vivo fluorescence imaging. Journal of controlled release, 197, 78-86.
    Zhang, C. Y., Yeh, H. C., Kuroki, M. T., & Wang, T. H. 2005 Single-quantum-dot-based DNA nanosensor. Nature materials, 4(11), 826-831.
    Zhang, C. Y., & Johnson, L. W. 2007 Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit. Angewandte Chemie International Edition, 46(19), 3482-3485.
    陳易靖,以電荷動力實現快速且高靈敏度的FRET分子感測,國立成功大學,碩士論文,2017。
    梁紫涵,整合DNA拉伸及交流電荷動力作用製備快速且高靈敏度的FRET分子感測器,國立成功大學,碩士論文,2017。
    趙慶安,在交流電場下實現定向組裝奈米粒子和DNA分子來增益FRET感測,國立成功大學,碩士論文,2018。

    下載圖示 校內:2023-07-28公開
    校外:2023-07-28公開
    QR CODE