簡易檢索 / 詳目顯示

研究生: 李宗祐
Lee, Tsung-Yu
論文名稱: 電荷注入薄膜之液滴發電性能提升之研究
An Improved Electricity Generator by Water Droplets Falling onto Charge-Injected Polymer Films
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 63
中文關鍵詞: 液滴發電裝置接觸帶電電荷注入氧化銦錫玻璃聚四氟乙烯非晶含氟聚合物蠶絲蛋白
外文關鍵詞: Droplet electricity generator, Charge injection, ITO glass, Polytetrafluoroethylene, Silk powder
相關次數: 點閱:47下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網科技的蓬勃發展,使得電力自我供應的無線感測器需求大增,而摩擦奈米發電裝置可將環境中微小的動能轉變為電能,對於供應電力給予無電網支援的無線感測器極具發展潛力。本研究針對固液接觸的摩擦發電裝置進行改良,採用旋轉塗佈法將單一材料或複合材料分別塗佈於ITO玻璃表面,以探討不同薄膜材料的摩擦發電的效果。當使用單一非晶氟系材料、PTFE懸浮液複合材料與蠶絲蛋白複合材料薄膜進行電潤濕電荷注入時皆能使薄膜材料表面電荷密度增加並提高輸出電流,其中非晶氟系材料與蠶絲蛋白複合材料皆能提高電流約12倍,並且蠶絲蛋白複合材料因為其強氫鍵的相互作用,能使薄膜表面缺損減少而提高薄膜的穩定性,而PTFE懸浮液複合材料因為能抓住更多注入電荷而擁有較高的表面電荷密度,能提高約25倍以上的輸出電流。最後,本研究也針對薄膜厚度、溶液濃度與液滴摩擦發電裝置放置角度對於輸出電流的影響進行探討,當薄膜厚度愈薄,電潤濕電荷注入時,可使薄膜材料擁有的表面電荷密度愈高,使得摩擦發電的輸出電流值愈大;摩擦發電裝置放置角度改變時,主要影響電流產生之持續時間;而當溶液濃度提高,電導度提升因此也使電流輸出提高。本研究藉由複合薄膜材料與薄膜厚度的控制,提高了固液接觸摩擦發電裝置之電荷注入的效果,提高薄膜材料表面電荷密度而大幅地提升液滴摩擦發電裝置的電流輸出,有助於未來液滴摩擦發電裝置的發展。

    In this study, the mechanism of a solid-liquid triboelectric nanogenerator is investigated using the dual-electrode mode for harvesting hydropower, and the electrowetting-assisted charge injection method was used to improve the current output. To increase the amount of charge captured by the film after the charge injection, a film material was selected based on the contact electrification property to increase the surface charge density of the film and improve the current output of the electricity generator. The results showed that the output current of fluoropolymer film can be increased by more than 25 times after an electrowetting-assisted charge injection by adding PTFE particles; the surface defects of the film can be reduced, and the current stability can be improved by adding silk powder. It was also proved experimentally that a thinner film induces a higher current after the electrowetting-assisted charge injection, and a higher concentration (conductivity) of droplet solution leads to a higher current output. The equivalent circuit and experimental results show that the platform angle does not affect the value of the current output. The results of this study provide a better understanding of the power generation mode and mechanism of a droplet electricity generator and indicate the feasibility of the generator to improve the current output and surface by using different doped materials.

    中文摘要I 致謝XII 內容目錄XIII 圖目錄XV 縮寫說明XIX 第一章 緒論1 1.1簡介1 1.2 文獻回顧3 1.2.1 TENG系統起源3 1.2.2 TENG種類5 1.2.3 TENG應用9 1.2.4 TENG改良10 1.3動機11 第二章 原理12 2.1 接觸帶電(CE)和摩擦生電(TE)12 2.1.1固體–固體接觸情況13 2.1.2液體–固體接觸情況17 2.1.3液體–液體接觸情況19 2.2 TENG 改良20 2.2.1 電荷注入20 2.2.2 材料摻入22 第三章 實驗材料與方法23 3.1實驗材料23 3.2實驗儀器25 3.3實驗方法與流程31 3.3.1 薄膜與晶片製作31 3.3.2 溶液配製35 3.3.3 電潤濕電荷注入處理35 3.3.4 實驗架設與測量37 第四章 結果與討論39 4.1薄膜表面狀態分析39 4.2觀察單液滴運動之電流產生過程42 4.3外部負載電阻與輸出功率之關係46 4.4電潤濕電荷注入47 4.5材料厚度對電流影響50 4.6不同濃度溶液對電流影響54 4.7不同傾斜角度對電流影響55 第五章 結論與展望57 5.1 結論57 5.2 未來展望58 參考文獻59

    [1] Burhan, M., R.A. Rehman, B. Khan, and B.-S. Kim, IoT elements, layered architectures and security issues: A comprehensive survey. Sensors, 18(9): p.2796, (2018.).
    [2] Stephens, G.L., J. Li, M. Wild, C.A. Clayson, N. Loeb, S. Kato, T. L'ecuyer, P.W. Stackhouse, M. Lebsock, and T. Andrews, An update on Earth's energy balance in light of the latest global observations. Nature Geoscience, 5(10): p.691-696, (2012.).
    [3] Yin, J., J. Zhou, S. Fang, and W. Guo, Hydrovoltaic energy on the way. Joule, 4(9): p.1852-1855, (2020.).
    [4] Zhang, N., H. Gu, H. Zheng, S. Ye, L. Kang, C. Huang, K. Lu, W. Xu, Q. Miao, and Z. Wang, Boosting the output performance of volume effect electricity generator (VEEG) with water column. Nano Energy, 73: p.104748, (2020.).
    [5] Choi, D., D. Yoo, K.J. Cha, M. La, and D.S. Kim, Spontaneous occurrence of liquid-solid contact electrification in nature: toward a robust triboelectric nanogenerator inspired by the natural lotus leaf. Nano Energy, 36: p.250-259, (2017.).
    [6] Jeon, S.-B., D. Kim, G.-W. Yoon, J.-B. Yoon, and Y.-K. Choi, Self-cleaning hybrid energy harvester to generate power from raindrop and sunlight. Nano Energy, 12: p.636-645, (2015.).
    [7] Lee, J.H., S. Kim, T.Y. Kim, U. Khan, and S.-W. Kim, Water droplet-driven triboelectric nanogenerator with superhydrophobic surfaces. Nano Energy, 58: p.579-584, (2019.).
    [8] Liu, Y., Y. Zheng, T. Li, D. Wang, and F. Zhou, Water-solid triboelectrification with self-repairable surfaces for water-flow energy harvesting. Nano Energy, 61: p.454-461, (2019.).
    [9] Zhu, G., Y. Su, P. Bai, J. Chen, Q. Jing, W. Yang, and Z.L. Wang, Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface. ACS Nano, 8(6): p.6031-6037, (2014.).
    [10] Xue, G., Y. Xu, T. Ding, J. Li, J. Yin, W. Fei, Y. Cao, J. Yu, L. Yuan, and L. Gong, Water-evaporation-induced electricity with nanostructured carbon materials. Nature Nanotechnology, 12(4): p.317-321, (2017.).
    [11] Liu, H., J. Zhang, Q. Shi, T. He, T. Chen, L. Sun, J.A. Dziuban, and C. Lee, Development of a thermoelectric and electromagnetic hybrid energy harvester from water flow in an irrigation system. Micromachines, 9(8): p.395, (2018.).
    [12] Liu, H., S. Zhang, T. Kobayashi, T. Chen, and C. Lee, Flow sensing and energy harvesting characteristics of a wind-driven piezoelectric Pb (Zr0. 52, Ti0. 48) O 3 microcantilever. Micro & Nano Letters, 9(4): p.286-289, (2014.).
    [13] Fan, F.-R., Z.-Q. Tian, and Z.L. Wang, Flexible triboelectric generator. Nano energy, 1(2): p.328-334, (2012.).
    [14] Lin, Z.H., G. Cheng, L. Lin, S. Lee, and Z.L. Wang, Water–solid surface contact electrification and its use for harvesting liquid‐wave energy. Angewandte Chemie International Edition, 52(48): p.12545-12549, (2013.).
    [15] Kim, W.-G., D.-W. Kim, I.-W. Tcho, J.-K. Kim, M.-S. Kim, and Y.-K. Choi, Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano, 15(1): p.258-287, (2021.).
    [16] Wang, Z.L. and J. Song, Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312(5771): p.242-246, (2006.).
    [17] Hu, Y., Y. Zhang, C. Xu, G. Zhu, and Z.L. Wang, High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano letters, 10(12): p.5025-5031, (2010.).
    [18] Poudel, B., Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, and D. Vashaee, High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 320(5876): p.634-638, (2008.).
    [19] Stark, B.H., P.D. Mitcheson, P. Miao, T.C. Green, E.M. Yeatman, and A.S. Holmes, Converter circuit design, semiconductor device selection and analysis of parasitics for micropower electrostatic generators. IEEE Transactions on Power Electronics, 21(1): p.27-37, (2006.).
    [20] Wu, C., A.C. Wang, W. Ding, H. Guo, and Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Advanced Energy Materials, 9(1): p.1802906, (2019.).
    [21] Lu, Q., M. Sun, B. Huang, and Z.L. Wang, Electronic View of Triboelectric Nanogenerator for Energy Harvesting: Mechanisms and Applications. Advanced Energy and Sustainability Research, 2(4): p.2000087, (2021.).
    [22] Lin, Z.H., G. Cheng, S. Lee, K.C. Pradel, and Z.L. Wang, Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process. Advanced Materials, 26(27): p.4690-4696, (2014.).
    [23] Kwon, S.-H., J. Park, W.K. Kim, Y. Yang, E. Lee, C.J. Han, S.Y. Park, J. Lee, and Y.S. Kim, An effective energy harvesting method from a natural water motion active transducer. Energy & Environmental Science, 7(10): p.3279-3283, (2014.).
    [24] Ding, J., W.-Q. Tao, and S.-K. Fan, Study of vibrational droplet triboelectric nanogenerator on structural and operational parameters. Nano Energy, 70: p.104473, (2020.).
    [25] Chang, C.-C., W.-H. Huang, V.-P. Mai, J.-S. Tsai, and R.-J. Yang, Experimental Investigation into Energy Harvesting of NaCl Droplet Flow over Graphene Supported by Silicon Dioxide. Energy: p.120715, (2021.).
    [26] Zhao, X., H. Askari, and J. Chen, Nanogenerators for smart cities in the era of 5G and Internet of Things. Joule, (2021.).
    [27] Wang, Z.L., Triboelectric nanogenerators as new energy technology and self-powered sensors–Principles, problems and perspectives. Faraday Discussions, 176: p.447-458, (2015.).
    [28] Zi, Y., J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, and Z.L. Wang, Effective energy storage from a triboelectric nanogenerator. Nature Communications, 7(1): p.1-8, (2016.).
    [29] Xi, F., Y. Pang, W. Li, T. Jiang, L. Zhang, T. Guo, G. Liu, C. Zhang, and Z.L. Wang, Universal power management strategy for triboelectric nanogenerator. Nano Energy, 37: p.168-176, (2017.).
    [30] Wang, Z.L., On the first principle theory of nanogenerators from Maxwell's equations. Nano Energy, 68: p.104272, (2020.).
    [31] Wang, Z.L., Triboelectric nanogenerator (TENG)—sparking an energy and sensor revolution. Advanced Energy Materials, 10(17): p.2000137, (2020.).
    [32] Wang, Z.L. and A.C. Wang, On the origin of contact-electrification. Materials Today, 30: p.34-51, (2019.).
    [33] Li, S., Y. Zhou, Y. Zi, G. Zhang, and Z.L. Wang, Excluding contact electrification in surface potential measurement using kelvin probe force microscopy. ACS Nano, 10(2): p.2528-2535, (2016.).
    [34] Lin, S., L. Xu, A.C. Wang, and Z.L. Wang, Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer. Nature Communications, 11(1): p.1-8, (2020.).
    [35] Jiang, P., L. Zhang, H. Guo, C. Chen, C. Wu, S. Zhang, and Z.L. Wang, Signal output of triboelectric nanogenerator at oil–water–solid multiphase interfaces and its application for dual‐signal chemical sensing. Advanced Materials, 31(39): p.1902793, (2019.).
    [36] Wang, Y., X. Jin, W. Wang, J. Niu, Z. Zhu, and T. Lin, Efficient Triboelectric Nanogenerator (TENG) Output Management for Improving Charge Density and Reducing Charge Loss. ACS Applied Electronic Materials, 3(2): p.532-549, (2021.).
    [37] Li, Z.B., H.Y. Li, Y.J. Fan, L. Liu, Y.H. Chen, C. Zhang, and G. Zhu, Small-sized, lightweight, and flexible triboelectric nanogenerator enhanced by PTFE/PDMS nanocomposite electret. ACS Applied Materials & Interfaces, 11(22): p.20370-20377, (2019.).
    [38] Wang, H., L. Xu, Y. Bai, and Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nature Communications, 11(1): p.1-9, (2020.).
    [39] Verheijen, H. and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir, 15(20): p.6616-6620, (1999.).
    [40] Berry, S., J. Kedzierski, and B. Abedian, Irreversible electrowetting on thin fluoropolymer films. Langmuir, 23(24): p.12429-12435, (2007.).
    [41] Xu, W., H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, and R.X. Xu, A droplet-based electricity generator with high instantaneous power density. Nature, 578(7795): p.392-396, (2020.).
    [42] Wang, X., S. Fang, J. Tan, T. Hu, W. Chu, J. Yin, J. Zhou, and W. Guo, Dynamics for droplet-based electricity generators. Nano Energy, 80: p.105558, (2021.).
    [43] Zhang, N., H. Gu, K. Lu, S. Ye, W. Xu, H. Zheng, Y. Song, C. Liu, J. Jiao, and Z. Wang, A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting. Nano Energy, 82: p.105735, (2021.).
    [44] Wu, H., N. Mendel, D. van den Ende, G. Zhou, and F. Mugele, Energy harvesting from drops impacting onto charged surfaces. Physical Review Letters, 125(7): p.078301, (2020.).
    [45] Yun, B.K., H.S. Kim, Y.J. Ko, G. Murillo, and J.H. Jung, Interdigital electrode based triboelectric nanogenerator for effective energy harvesting from water. Nano Energy, 36: p.233-240, (2017.).
    [46] Yu, J. and T. Ma, Triboelectricity-based self-charging droplet capacitor for harvesting low-level ambient energy. Nano Energy, 74: p.104795, (2020.).
    [47] Li, H., Z. Guo, S. Kuang, H. Wang, Y. Wang, T. Wu, Z.L. Wang, and G. Zhu, Nanocomposite electret with surface potential self-recovery from water dipping for environmentally stable energy harvesting. Nano Energy, 64: p.103913, (2019.).
    [48] Hirschberg, R.E., M. Scharnberg, S. Schröder, S. Rehders, T. Strunskus, and F. Faupel, Electret films with extremely high charge stability prepared by thermal evaporation of Teflon AF. Organic Electronics, 57: p.146-150, (2018.).
    [49] Šutka, A., K. Mālnieks, L. Lapčinskis, M. Timusk, K. Pudzs, and M. Rutkis, Matching the directions of electric fields from triboelectric and ferroelectric charges in nanogenerator devices for boosted performance. Iscience, 23(4): p.101011, (2020.).
    [50] Wu, H., R. Dey, I. Siretanu, D. van den Ende, L. Shui, G. Zhou, and F. Mugele, Electrically controlled localized charge trapping at amorphous fluoropolymer–electrolyte interfaces. Small, 16(2): p.1905726, (2020.).
    [51] Kim, H.J., J.H. Kim, K.W. Jun, J.H. Kim, W.C. Seung, O.H. Kwon, J.Y. Park, S.W. Kim, and I.K. Oh, Silk nanofiber‐networked bio‐triboelectric generator: silk bio‐TEG. Advanced Energy Materials, 6(8): p.1502329, (2016.).

    下載圖示 校內:2023-09-02公開
    校外:2023-09-02公開
    QR CODE