| 研究生: |
江智揚 Chiang, Chih-Yang |
|---|---|
| 論文名稱: |
新型奈米壓痕基材效應模型建立與其在薄膜材料機械性質檢測之應用 A novel model for evaluating substrate effect in nanoindentation and its application for elastic properties characterization of thin film materials |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 奈米壓痕技術 、基材效應 、有限元素分析 、能量 、深度感測技術 、King model 、RTA 、氮化矽 |
| 外文關鍵詞: | nanoindentation, substrate effect, finite element analysis, King model, rapid thermal annealing, silicon nitride |
| 相關次數: | 點閱:194 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奈米壓痕技術由於負載與位移之解析度高,以及量測方法之均一性與簡易性等優點,故近年來廣泛被應用於各種類型之材料測試。然而,此方法的原始實驗資料僅提供壓痕器之負載及位移,尚須輔以合適的力學模型方得以運作。目前常用於楊氏模數及硬度值檢測之力學模型為Oliver與Pharr所發展的塊材力學模型,若應用於薄膜材料之機械性質檢測會受到基材的影響,使得量測的結果為深度的函數,大大減低試驗數據的可靠度。因此,許多研究皆致力於探討基材對奈米壓痕試驗的影響,希望能提出改善的方法。鑒於雙層材料的接觸行為較單一均值材料複雜,解析解並不容易求取,故本研究使用有限元素分析模擬雙層材料的接觸行為,以半解析的方式說明其接觸特性。首先,本研究探討基材效應對試驗結果的影響,以能量分佈定量地分析基材之貢獻度。此外,深度感測技術於雙層材料之可靠度亦是本研究所探討的主題之一,善用有限元素分析的優勢,比較深度感測技術之結果與理想值的差異。接著,本研究善用上述於雙層材料之接觸特性研究,輔以King model於雙層材料接觸響應分配之概念,發展一適合用於奈米壓痕試驗之雙層材料力學模型。最後,將此修正模型應用於熱處理之氮化矽薄膜機械性質檢測。由塊材力學模型所得到的結果可以發現:氮化矽薄膜之楊氏模數為深度的函數,其數值之可靠度大打折扣。藉由本研究所發展的雙層材料力學模型,有效地說明基材對試驗結果的影響,減少試驗結果的不確定性,有助於合理地探討熱處理對薄膜機械性質的影響。
Depth-sensing instrumental indentations provide an approach for studying elastic and inelastic properties of thin films. However, the obtained experimental data can only provide the relationship between the applied load and the penetration depth and adequate mechanical models are therefore required for converting the test data into final mechanical properties such as Young’s modulus and hardness. However, the traditional Oliver and Pharr conversion model does not consider the substrate effect and can only work for the situation where the indentation depth significantly less than the film thickness. Several models have been proposed for extracting Young’s modulus based on Oliver and Pharr's model with King’s analysis. However, the original King's model is for flat punch and the accuracy of those models should be justified. In this work, a novel model for extracting the Young’s modulus of thin films is proposed. Dimensional analyses are firstly used to find the governing parameters and to obtain scaling relationships for subsequent finite element analysis. Based on the initial suggestion of King model, a more rational relationship between the reduced modulus and the Young’s modulus of both film and substrate are assumed and the associated model parameters are determined by fitting the results obtained using finite element analysis. In comparison with the previous models, the computer experimental results indicated that the proposed model can provide better accuracy in extracting thin film’s Young’s modulus. Finally, in conjunction with existed nanoindentation experimental data, we utilize this new conversion model to calculate the Young’s modulus of plasma enhanced chemical vapor deposited (PECVD) silicon nitride after various rapid thermal annealing processes. The answers show that the structure exhibited strong substrate effect and the traditional Oliver and Pharr model could significantly over- or under-estimate the Young's modulus of PECVD nitrides. And this could be critical for microsystem longevity evaluations. In summary, in comparison with other models, the proposed model is more accurate in extracting the Young’s modulus of thin film with presence of substrate effect for related applications in material characterization or structural integrity design.
[1] W. C. Oliver and G. M. Pharr, "An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, " J. Mater. Res., 7, 1564-1583, 1992
[2] D. A. Hill, D. Nowell, and A.Sackfield, "Mechanics of Elastic contacts," Butterworth-Heinemann Ltd, 1993
[3] J. Boussinesq , "Applications des Potentiels á l'Étude de l'Équilibre et du Mouvement des Solides élastiques. ," Gauthier-Villars, Paris, 1855
[4] I. N. Sneddon, "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile," Int. J. Engng. Sci., 3, 47-57, 1965
[5] G. M. Pharr , W. C. Oliver and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," J. Mater. Res, 7, 613-617, 1992
[6] A. Iost and R. Bigot, "Indentation size effect : reality or artifact?," J. Mater. Sci., 31, 3573-3577, 1996
[7] S. Chen , L. Liu and T. Wang, " Size dependent nanoindentation of a soft film on a hard substrate", Acta Materialia, 52, 1089-1095, 2004
[8] C. W. Shih, M. Yang, and J. C. M. Li, " Effect of tip radius on nanoindentation", J. Mater. Res., 6, 2623-2628, 1991
[9] K. S. Chen, T. C. Chen, K. S. Ou, "Development of semi-empirical formulation for extracting materials properties from nanoindentation measurements: Residual stresses, substrate effect, and creep, " Thin Solid Films, 516, 1931-1940, 2008
[10] R. Saha and W. D. Nix, " Effects of the substrate on the determination of thin film mechanical properties by nanoindentation," J. Mater. Res., 11, 752-759, 2002
[11] R. B. King, "Elastic analysis of some punch problems for a layered medium, "Int. J. Solids Struct., 23, 1657-1664, 1987
[12] H. Y. Yan, K. S. Ou, K. S. Chen, "Mechanical Properties Measurement of PECVD Silicon Nitride after Rapid Thermal Annealing Using Nanoindentation Technique, " Strain, 44, 259-266, 2008
[13] Y. Liao, Y. Zhou, Y. Huang and L. Jiang, " Measuring elastic–plastic properties of thin films on elastic–plastic substrates by sharp indentation", Mechanics of Materials, 41, 308-318, 2009
[14] M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh and S. Suresh, " Computational modeling of the forward and reverse problems in instrumented sharp indentation", Acta Materialia, 49, 3899-3918, 2001
[15] J. Vernon, "Introduction to Engineering Materials," MacMillan, Inc. 3, 1993
[16] W. N. Sharpe, B. Yuan, and R. Vaidyanathan, "Measurements of Young's modulus, Poisson's ratio, and tensile strength of polysilicon, " Proceedings of the Tenth IEEE International Workshop on Microelectromechanical Systems, 424-429, 1997
[17] S. O. Kucheyev, J. E. Bradby, J. S. Williams, C. Jagadish, M. Toth, M. R. Phillips, and M. V. Swain, "Nanoindentation of epitaxial GaN films, " Appl. Phys. Lett., 77, 3373-3375, 2000
[18] G. Pelleda, K. Taib, D. Sheyna, Y. Zilbermana, S. Kumbarc, L. S. Nairc, C. T. Laurencinc, D. Gazita and C. Ortizb, "Structural and nanoindentation studies of stem cell-based tissue-engineered bone, " Journal of Biomechanics, 40, 399-411, 2007
[19] G. M. Pharr , W. C. Oliver and F. R. Brotzen, "On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation," J. Mater. Res, 7, 613-617, 1992
[20] M. F. Doerner and W. D. Nix, "A method for interpreting the data from depth-sensing indentation instruments," J. Mater. Res, 1, 601-609, 1986
[21] A.C. Fischer-Cripps, "Critical review of analysis and interpretation of nanoindentation test data," Surface and Coatings Technology, 200, 4153-4165, 2006
[22] A. C. Fischer-Cripps, "Nanoindentation," Spring-Verlag New York, Inc., 2002
[23] 顏宏益,應用奈米壓痕技術於塊狀與薄膜材料之機械性質檢測與分析,國立成功大學機械工程學系碩士論文,2007
[24] 陳拓丞,應用因次分析法於奈米壓痕試驗之理論分析與數值模擬:殘留應力、基材效應與黏彈性質之研究,國立成功大學機械工程學系碩士論文,2005
[25] T. Y. Tsui, W. C. Oliver, and G. M. Pharr, " Influences of stress on the measurement of mechanical properties using nanoindentation: Part I. Experimental studies in an aluminum alloy," J. Mater. Res.,11, 752-759, 1996
[26] A. Bolshakov, W. C. Oliver, and G. M. Pharr, " Influences of stress on the measurement of mechanical properties using nanoindentation: Part II. Finite element simulations," J. Mater. Res., 11, 760-768, (1996)
[27] S. Suresh and A.E. Giannakopoulos, "A new method for estimating residual stresses by instrumented sharp indentation, " Acta Mater., 46, 5755-5767, 1998
[28] D. A. Hill, D. Nowell, and A.Sackfield, "Mechanics of Elastic contacts," Butterworth-Heinemann Ltd, 1993
[29] G. I. Barenblatt, "Scaling, Self-similarity, and Intermediate Asymptotics," Cambridge University Press, 1996
[30] E.Buckingham, "On physically similar systems : Illustrations of the use of dimensional equations," Phys. Rev., Vol.4, 345-376,1914
[31] B. W. Mott, "Micro-indentation hardness testing," Butterworths, London, 1956
[32] Y. T. Cheng and C. M. Cheng," Scaling approach to conical indentation in elastic-plastic solids with work hardening," J. Appl. Phys., Vol.84, 1284-1291, 1998
[33] Y. T. Cheng and C. M. Cheng," Scaling relationships in conical indentation of elastic-perfectly plastic solids," Int. J. Solids Struct., Vol.36, 1231-1243, 1999
[34] Y. T. Cheng and C. M. Cheng," Scaling, dimensional analysis, and indentation measurements," Materials Science and Engineering R, Vol.44, 91-149, 2004
[35] M. Dao, N. Chollacoop, K. J. Van Vliet, T. A. Venkatesh, and S. Suresh," Computational modeling of the forward and reverse problems in instrumented sharp indentation", Acta Mater., Vol.49, 3899-3918, 2001
[36] A. K. Bhattacharya and W. D. Nix, "Finite element simulation of indentation experiments," Int. J. Solids Struct., Vol.24, 1287-1298, 1988
[37] T. A. Laursen and J. C. Simo, "A study of the mechanics of microindenation using finite elements," J Mater. Res., Vol.7, 618-626, 1992
[38] M. Lichinchi, C. Lenardi, J. Haupt and R. Vitali, "Simulation of Berkovich nanoindentation experiments on thin films using finite element method," Thin Solid Films, Vol.312, 240-248, 1998
[39] J. D. Bressan, A. Tramontin and C. Rosa, "Modeling of nanoindentation of bulk and thin film by finite element method," Wear, Vol.258, 115–122, 2005
[40] J. C. Hay, A. Bolshakov and G. M. Pharr, "A critical examination of the fundamental relations used in the analysis of nanoindentation data," J. Mater. Res., Vol.14, 2296–2305, 1999
[41] M. J. Bamber, K. E. Cooke, A.B. Mann and B. Derby," Accurate determination of Young’s modulus and Poisson’s ratio of thin films by a combination of acoustic microscopy and nanoindentation," Thin Solid Films, Vol.398-399, 299–305, 2001
[42] J. Luo and J. Lin," A study on the determination of plastic properties of metals by instrumented indentation using two sharp indenters," Int. J. Solids Struct., Vol.44, 5803–5817, 2007
[43] S.Timoshenko and J. N. Goodier, "Theory of elasticity," McGraw-Hill, New York, 1951
[44] G. Fu and A. Chandra, "Normal Indentation of Elastic Half-Space With a Rigid Frictionless Axisymmetric Punch," J. Appl. Mech., Vol.69, 142–147, 2002
[45] H. Hakiri, A. Matsuda and M. Sakai, "Instrumented indentation microscope applied to the elastoplastic indentation contact mechanics of coating/substrate composites," J. Mater. Res., Vol.24, 1950–1959, 2009
[46] G. G. Stoney, "The tension of thin metallic films deposited by electrolysis," Proc. R. Soc. London, 82, 172-175, 1909
[47] 吳秉欣、顏宏益、歐廣順、江智揚、陳國聲,"磁控濺鍍與電漿輔助化學氣相沈積氮化矽薄膜材料機械性質檢測及其機械性質之比較",第三十四屆中華民國力學學會,雲林科技大學,2010
[48] S. Timoshenko and S. Woinowsky-Krieger, "Theory of plates and shells," McGraw-Hill, New York,1959