| 研究生: |
孫仲紹 Sun, Chung-Shao |
|---|---|
| 論文名稱: |
以晶體塑性有限元素法模擬多晶銅軋延之塑流曲線及織構 Simulation of Flow Curve and Rolling Texture of Polycrystalline Copper Using Crystal Plasticity Finite Element Method (CP-FEM) |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 軋延 、織構 、晶體塑性 、有限元素法 、塑流曲線 |
| 外文關鍵詞: | Rolling, Texture, Crystal plasticity, Finite element method |
| 相關次數: | 點閱:60 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自1983年R. J. Asaro提出晶體塑性模型,解決了Taylor模型假設滑移是速率無關的問題以及滑移系統啟動的唯一性的問題後,許多研究皆使用晶體塑性模型並結合有限元素法以模擬金屬加工時的織構演化。然而,大多數的研究只呈現織構模擬的結果,而未討論晶體塑性模型之可行性。
為此,本研究結合晶體塑性模型與有限元素法模擬銅於軋延時之塑流曲線及織構演化,並將織構模擬結果與其他模型和實驗結果比較,討論造成差異的可能原因,以探討晶體塑性模型之可行性。同時,本研究也探討晶體塑性模型參數與有限元素法參數(元素種類)對模擬結果之影響。
塑流曲線的模擬結果顯示組成律參數中的γ ̇_0、m、κ_S0、γ ̇_S0和m^'等參數會影響塑流曲線的應力飽和值,而h_0和κ_0等參數會影響曲線的斜率。
織構的模擬結果顯示C3D8與C3D20兩種元素幾乎不會影響模擬結果,而模擬結果接近Taylor模型中的F模型與B模型的混合,其中以F模型的貢獻為主。將模擬結果與實驗結果比較可以發現在30%軋延量時,晶體塑性有限元素法的模擬結果與實驗結果相似,兩者皆顯示均勻分布的α-fiber與β-fiber。而在60%及90%軋延量時,模擬結果與實驗結果皆顯示很強的β-fiber,但模擬的最強方位為copper方位,實驗的最強方位為S方位,造成此偏差的可能原因為模型僅考慮滑移對織構演化的影響,而未考慮其他變形機制,再加上模型假設所有晶粒的變形相同,而沒有考慮晶粒周遭環境的影響。
In this study, texture of rolled copper is simulated using crystal plasticity model and finite element method. Effect of element type on simulation results are discussed, and the simulated texture is compared to the results of other simulation models and to the experimental results in order to explore the feasibility of the crystal plasticity model.
Based on the results of correlation coefficient, the simulated texture using C3D8 and C3D20 type element in Abaqus are almost the same, which means element type does not affect the simulation results.
It is found that, under the boundary condition of rolling, the simulated texture using CP-FEM is similar to the simulated texture using mixture of F model and a small amount of B model.
At 30% reduction ratio, both the simulation results and experimental results show a relatively homogeneous distribution of α-fiber and β-fiber. At 60% and 90% reduction ratios, however, the simulation results deviate from the experimental results. The deviation happens because slip is the only mechanism of plastic deformation in the model we used and it is assumed in the model that all the grains in an integration point are subjected to the same deformation.
[1] D. Peirce, R. J. Asaro, and A. Needleman, "Material rate dependence and localized deformation in crystalline solids," Acta Metallurgica, vol. 31, no. 12, pp. 1951-1976, 1983.
[2] J. Hirsch and K. Lücke, "Mechanism of deformation and development of rolling textures in polycrystalline F.C.C. metals-II. simulation and interpretation of experiments on the basis of Taylor-type theories," Acta Metallurgica, vol. 36, no. 11, pp. 2883-2904, 1988.
[3] 蕭世杰, "探討泰勒模型模擬和實驗間冷軋純銅優選方位強度差異之研究," 成功大學材料科學及工程學系學位論文, 2018.
[4] J. Hirsch and K. Lücke, "Mechanism of deformation and development of rolling textures in polycrystalline F.C.C. metals-I. description of rolling texture development in homogeneous CuZn alloys," Acta Metallurgica, vol. 36, no. 11, pp. 2863-2882, 1988.
[5] R. J. Asaro and A. Needleman, "Texture development and strain hardening in rate dependent polycrystals," Acta Metallurgica, vol. 33, no. 6, pp. 923-953, 1985.
[6] X. Ling, M. F. Horstemeyer, and G. P. Potirniche, "On the numerical implementation of 3D rate-dependent single crystal plasticity formulations," International Journal for Numerical Methods in Engineering, vol. 63, no. 4, pp. 548-568, 2005.
[7] L. Anand and M. Kothari, "A Computational Procedure for Rate-Independent Crystal Plasticity," Journal of the Mechanics and Physics of Solids, vol. 44, no. 4, pp. 525-558, 1996.
[8] S. R. Kalidindi, C. A. Bronkhorst, and L. Anand, "Crystallographic texture evolution in bulk deformation processing of FCC metals," Journal of the Mechanics and Physics of Solids, vol. 40, no. 3, pp. 537-569, 1992.
[9] S. Nemat-Nasser, D.-T.Chung, and L. M. Taylor, "Phenomenological modelling of rate-dependent plasticity for high strain rate problems," Mechanics of Materials, vol. 7, no. 4, pp. 319-344, 1989.
[10] E. Krempl and F. Khan, "Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers," International Journal of Plasticity, vol. 19, no. 7, pp. 1069-1095, 2003.
[11] R. J. Asaro, "Crystal Plasticity," Journal of Applied Mechanics, vol. 50, no. 4b, pp. 921-934, 1983.
[12] L. Anand, S. Balasubramanian, and M. Kothari, "Constitutive modeling of polycrystalline metals at large strains," in Large Plastic Deformation of Crystalline Aggregates, vol. 376. Vienna: Springer, 1997, pp. 109-172.
[13] E. B. Marin, "On the Formulation of a Crystal Plasticity Model," Sandia National Laboratories, United States, SAND2006-4170, 2006.
[14] T. R. Chandrupatla and A. D. Belegundu, Introduction to Finite Elements in Engineering, 3 rd ed. the United States of America: Pearson, 2002.
[15] 王栢村, 電腦輔助工程分析之實務與應用. 台北: 全華科技圖書公司, 2001.
[16] J. N. Reddy, An Introduction to the Finite Element Method, 3 rd ed. New York: McGraw-Hill, 2006, p. 896.
[17] A. F. Bower, Applied Mechanics of Solids: CRC Press, 2009, p. 820.
[18] L. Anand, "Constitutive equations for hot-working of metals," International Journal of Plasticity, vol. 1, no. 3, pp. 213-231, 1985.
[19] U. F. Kocks, "The relation between polycrystal deformation and single-crystal deformation," Metallurgical and Materials Transactions, vol. 1, no. 5, pp. 1121-1143, 1970.
[20] A. Zang and O. Stephansson, "Stress Definition," in Stress Field of the Earth's Crust: Springer Netherlands, 2010, pp. 17-36.
[21] E. B. Marin and P. R. Dawson, "On modelling the elasto-viscoplastic response of metals using polycrystal plasticity," Computer Methods in Applied Mechanics and Engineering, vol. 165, no. 1-4, pp. 1-21, 1998.
[22] J. C. Simo and T. J. R. Hughes, "Objective Integration Algorithms for Rate Formulations of Elastoplasticity," in Computational Inelasticity1 st ed. (Interdisciplinary Applied Mathematics, no. 7): Springer-Verlag New York, 1998, pp. 276-299.
[23] 陳皇均, "探討疊差能對冷軋黃銅、鎳及銅織構與微結構之影響," 成功大學材料科學及工程學系學位論文, 2015.
[24] F. Roters, P. Eisenlohr, T. R. Bieler, and D. Raabe, Crystal Plasticity Finite Element Methods. Weinheim: Wiley-VCH, 2010.
[25] F. Roters, "Advanced Models for Large Scale Simulations," in Advanced Material Models for the Crystal Plasticity Finite Element Method, 2011, pp. 113-158.
[26] A. Morawiec, "Some Statistical Issues," in Orientations and Rotations: Computations in Crystallographic Textures1 st ed.: Springer-Verlag Berlin Heidelberg, 2004, pp. 81-92.
[27] H. M. Ledbetter and E. R. Naimon, "Elastic Properties of Metals and Alloys. II. Copper," Journal of Physical and Chemical Reference Data, vol. 3, no. 4, pp. 897-935, 1974.
[28] P. S. Follansbee and U. F. Kocks, "A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable," Acta Metallurgica, vol. 36, no. 1, pp. 81-93, 1988.
[29] E. A. El-Danaf, A. Al-Mutlaq, and M. S. Soliman, "Role of stacking fault energy on the deformation characteristics of copper alloys processed by plane strain compression," Materials Science and Engineering: A, vol. 528, no. 25-26, pp. 7579– 7588, 2011.
[30] L. Anand and S. R. Kalidindi, "The process of shear band formation in plane strain compression of fcc metals: Effects of crystallographic texture," Mechanics of Materials, vol. 17, no. 2, pp. 223-243, 1994.
[31] A. Belyakov, T. Sakai, H. Miura, and K. Tsuzaki, "Grain refinement in copper under large strain deformation," Philosophical Magazine A, vol. 81, no. 11, pp. 2629-2643, 2001.
[32] J. R. Hirsch, "Correlation of deformation texture and microstructure," The Institute of Metals, vol. 6, no. 11, pp. 1048-1057, 1990.
[33] M. Sachtleber, Z. Zhao, and D. Raabe, "Experimental investigation of plastic grain interaction," Materials Science and Engineering: A, vol. 336, pp. 81-87, 2002.
校內:2024-08-20公開