| 研究生: |
林鳳儀 Lin, Feng-Yi |
|---|---|
| 論文名稱: |
探討凝血酶調節素胞內區域與ezrin的結合位置 Identification of an ezrin-binding site in thrombomodulin cytoplasmic domain |
| 指導教授: |
吳華林
Wu, Hua-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學暨分子生物學研究所 Department of Biochemistry and Molecular Biology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 凝血酶調節素 、蛋白結合 |
| 外文關鍵詞: | Thrombomodulin, Ezrin |
| 相關次數: | 點閱:66 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類凝血酶調節素(Thrombomodulin;簡稱TM)是血管內皮細胞表面的一種醣蛋白,它是身體中重要的抗凝血分子,主要是藉著結合凝血酶而限制凝血酶的促凝血活性及生理活性,科學家們利用包括生化分析及基因改造老鼠等方法探討凝血酶調節素的生理功能,發現凝血酶調節素也扮演抑制血塊溶解,抗發炎反應,抑制腫瘤細胞增生,維持正常的懷孕過程及胚胎發育等重要角色。在本實驗室最近的研究發現TM可以媒介細胞與細胞間的聯結,而且lectin-like結構區在此過程中是非常重要的,細胞間的連結作用對於細胞的爬行、增生及分化扮演重要的角色。而細胞連結的作用,主要是藉由細胞表面的蛋白與鄰近細胞表面(細胞對細胞)或細胞基質(細胞對細胞基質)上的蛋白結合,以及調節細胞內的訊息傳遞路徑來調控細胞連結所造成的細胞生理機能的改變。
ERM蛋白質已知是作為細胞骨架與膜蛋白之間的連結者,在ERM蛋白中,ezrin是被研究最多的蛋白。在實驗室初步的結果發現,確實ezrin可作為TM與細胞骨架的連結者。在本論文中,利用重組蛋白在細胞外做結合試驗(in vitro binding assay)的方式,來分析TM的胞內區域與ezrin的作用是直接結合或經由其他蛋白協助,此外,並更進一步探討在TM胞內區域上與ezrin結合有關的位置。
在本中研究證實,ezrin N端而非C端區域會直接結合於TM的胞內區域,不需其他分子輔助,這兩個分子結合呈現濃度依存性(dose-dependent)的現象,且其分離常數KD為0.98μM。另外利用截短TM胞內區域的方式,發現TM胞內區域中ezrin結合的區域是位於前九個胺基酸序列(RKKQGAARA)及最後九個胺基酸序列(RTERTRQRL)上。很多會與ERM蛋白質結合的膜蛋白,例如CD43, CD44 及 ICAM-2,在胞內區域靠近細胞膜附近的帶正電胺基酸區域被認為與ezrin的結合有關。利用在TM胞內區域靠近細胞膜附近的帶正電胺基酸區域胺基酸RKK以AAA取代的方式證明RKK確實為與ezrin結合有關的胺基酸。同時利用電腦分析預測TM胞內區域的特殊結構,發現在這個區域中有一個Class IV WW domain interaction motif (TP),主要涉及與磷酸化有關的蛋白與蛋白結合作用。在這個motif上將threonine 571以glutamic acid取代後,會將其原本與ezrin結合的能力降低。TM與ezrin的結合方式可能涉及透過胞內區域靠近細胞膜附近的帶正電胺基酸區域以及與Class IV WW domain interaction motif有關。
Thrombomodulin (TM) is a glycoprotein that was originally found on vascular endothelium and is well characterized as a natural endothelial anticoagulant factor. Studies by several investigators have elucidated multiple aspects of TM functions in fibrinolysis, inflammation, proliferation, and in embryogenesis. Our recent study has demonstrated that TM may have a novel function mediating cell-cell adhesion through its lectin-like domain. Adhesive interactions play critical roles in directing the migration, proliferation, and differentiation of cells. These adhesive interactions, mediated by cell surface proteins that bind to others on adjacent cells (cell-to-cell) or in the extracellular matrix (cell-to-extracellular matrix), also regulate intracellular signal transduction pathways that control adhesion-induced changes in cell physiology.
The ERM(ezrin/radixin/moesin) family of proteins, of which ezrin is the best studied member, act as a linker between plasma membrane and the actin cytoskeleton. Previous work in our laboratory implicated that ezrin links TM to the actin cytoskeleton. In this study, we have examined whether the interaction of ezrin and TM is interact directly by in vitro binding assay. Furthermore, we identified the regions cytoplasmic domain of TM responsible for binding to ezrin.
Here we provide evidence that the ezrin N-terminal domain bound to the TM cytoplasmic domain with an estimated KD of 0.98μM and in absence of other cofactors . By truncating the TM cytoplasmic domain we showed that the ezrin-binding sequence was located in the juxtamembrane sequence nine amino acids residues (RKKQGAARA) and at C-terminal tail nine amino acids (RTERTRQRL). Most of ERM-binding proteins such as CD43, CD44 and ICAM-2 have a cluster of positively charged amino acids in the juxtamembrane region of the cytoplasmic tail that was found to be responsible for the binding. Alanine mutations of membrane-proximal basic amino acid residues in the cytoplasmic domain of TM identified RKK as a critical residue for ezrin interaction. Meanwhile, a Class IV WW domain interaction motif (TP) that involved phosphorylation-dependent protein-protein interaction in TM cytoplasmic domain was predicted. Glutamic acid mutations of threonine 571 in this region impaired its binding ability to ezrin. We therefore conclude both that positively charged amino acid cluster RKK and WW domain interaction motif in TM cytoplasmic domain were involved in ezrin binding.
Algrain M, Turunen O, Vaheri A, Louvard D, Arpin M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J. Cell Biol. 120(1):129-139, 1993.
Amano, M. et al. Identification of a putative target for Rho as the serine-threonine kinase protein kinase N. Science. 271; 648-650, 1996.
Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb. Vasc. Biol. 20:2511-2518, 2000.
Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem. 35:1267-1276, 1987.
Boyd D, Beckwith J. The role of charged amino acids in the localization of secreted and membrane proteins. Cell. 62(6):1031-1033, 1990.
Bracke ME, Van Roy FM, Mareel MM. The E-cadherin/catenin complex in invasion and metastasis. Curr. Top. Microbiol. Immunol. 213:123-161, 1996. Review
Bretscher A, Reczek D, Berryman M. Ezrin: a protein requiring conformational activation to link microfilaments to the plasma membrane in the assembly of cell surface structures. J. Cell Sci. 110:3011-3018, 1997.
Bretscher A, Edwards K, Fehon RG. ERM proteins and merlin: integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 3: 586-599, 2002.
Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis:role of carboxypeptidase and the premature lysis of clots from hemophilic plasma. Blood. 88:3815-3823, 1996.
Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature. 401: 286-290, 1999.
Chen, J., Cohn, J. A. & Mandel, L. J. Dephosphorylation of ezrin as an early event in renal microvillar breakdown and anoxic injury. Proc. Natl. Acad. Sci. U S A. 92: 7495-7499, 1995.
Chen HI, Einbond A, Kwak S-J, Linn H, Koepf E, Peterson S, Kelly JW, Sudol M. Characterization of the WW domain of human Yes-associated protein and its polyproline-containing ligands. J. Biol. Chem. 272:17070–17077,1997.
Chong, L. D., Traynor-Kaplan, A., Bokoch, G. M. & Schwartz, M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5- kinase in mammalian cells. Cell. 79: 507-513, 1994.
Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell Physiol. 158:285-298, 1994.
Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood. 89:652-661, 1997.
Conway EM, Pollefeyt S, Cornelissen J, DeBaere I, Steiner-Mosonyi M, Weitz JI, Weiler-Guettler H, Carmeliet P, Collen D. Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. Blood. 93(10): 3442-3450, 1999.
Critchley DR, Holt MR, Barry ST, Priddle H, Hemmings L, Norman J. Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem. Soc. Symp. 65:79-99, 1999. Review.
DeBault LE, Esmon NL, Olson JR, and Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab. Invest. 54:172-178, 1986.
Denker SP, Huang DC, Orlowski J, Furthmayr H, Barber DL. Direct binding of the Na H exchanger NHE1 to ERM proteins regulates the cortical cytoskeleton and cell shape independently of H(+) translocation. Mol. Cell. 6: 1425-1436, 2000.
Denker SP, Barber DL. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na H exchanger NHE1. J. Cell Biol. 159: 1087-1096, 2002.
de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem. J. 290:655-659, 1993.
Dittman WA, Kumada T, Sadler JE, Majerus PW. The structure and function of mouse thrombomodulin. Phorbol myristate acetate stimulates degradation and synthesis of thrombomodulin without affecting mRNA levels in hemangioma cells. J. Biol. Chem. 263(30):15815-15822, 1988.
Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc. Natl .Acad. Sci. USA. 78:2249-2252, 1981.
Fievet BT, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M. Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J. Cell Biol. 164(5):653-659, 2004.
Gary R, Bretscher A. Ezrin self-association involves binding of an N-terminal domain to a normally masked C-terminal domain that includes the F-actin binding site. Mol. Biol. Cell. 6: 1061-1075, 1995.
Gary R, Bretscher A. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc. Natl. Acad. Sci.USA. 90: 10846-10850, 1993.
Gautreau A, Louvard D, Arpin M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150: 193-203, 2000.
Granes F, Berndt C, Roy C, Mangeat P, Reina M, Vilaro S. Identification of a novel Ezrin-binding site in syndecan-2 cytoplasmic domain. FEBS Lett. 547: 212-216, 2003.
Gronholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpen O. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumour suppressor protein merlin and the ERM protein ezrin. J. Cell Sci. 112: 895-904, 1999.
Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature. 382: 265-268, 1996.
Heiska, L. et al. Association of ezrin with intercellular adhesion molecule-1 and -2 (ICAM-1 and ICAM-2). Regulation by phosphatidylinositol 4, 5- bisphosphate. J. Biol. Chem. 273; 21893-21900, 1998.
Hirao, M. et al. Regulation mechanism of ERM (ezrin/radixin/moesin) protein/plasma membrane association: possible involvement of phosphatidy -linositol turnover and Rho-dependent signaling pathway. J. Cell. Biol. 135: 37-51, 1996.
Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J. Biochem. 118:1030-1036, 1995.
Huang HC, Shi GY, Jiang SJ, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin–mediated cell adhesion: involvement of its lectin-like domain. J. Biol. Chem. 278:46750-46759, 2003.
Ilsley JL, Sudol M, Winder SJ. The WW domain: linking cell signalling to the membrane cytoskeleton. Cell Signal. 14(3):183-189, 2002.
Ilsley JL, Sudol M, Winder SJ. The interaction of dystrophin with -dystroglycan is regulated by tyrosine phosphorylation. Cell Signal. 13(9):625-632, 2001.
Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore EE. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev. Biol. 122:483-491, 1987.
Ivetic A, Ridley AJ. Ezrin/radixin/moesin proteins and Rho GTPase signalling in leucocytes. Immunology. 112(2):165-76, 2004.
James M, Nuttal A, Ilsley JL, Ottersbach K, Tinsley JN, Sudol M, Winder SJ. Adhesion-dependent tyrosine phosphorylation of β-dystroglycan regulates its interaction with utrophin. J. Cell Sci. 113(10):1717-1726, 2000.
Kennel SJ, Lankford T, Hughes B, and Hotchkiss JA. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab.Invest. 59:692-701, 1988.
Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and is inhibited competitively by protein C. J. Biol. Chem. 273:12135-12139, 1998.
Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. British. J. Haematol. 78:515-522, 1991.
Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J. Biol. Chem. 262:2206-2212, 1987.
Lager DJ, Callaghan EJ, Worth SF, Raife TJ,and Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol. 146:933-943, 1995.
Lu P-J, Zhou XZ, Shen M, Lu KP. Function of WW domains as phospho-
serine- or phosphothreonine-binding modules. Science. 283(5406) :1325-1328, 1999.
Maruyama I, Bell CE, and Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell Biol. 101:363-371, 1985.
Maruno M, Yoshimine T, kuroda R, Ishii H, and Hayakawa T. Expression of thrombomodulin astrocytomas of various malignancy and in gliotic and normal brains. J. Neurooncol. 19:155-160, 1994.
McCachren SS, Diggs J, Weinberg JB, and Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood.78:3128-3132, 1991.
McClatchey AI. Merlin and ERM proteins: unappreciated roles in cancer development? Nat. Rev. Cancer. 3: 877, 2003.
McEver R. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66:80-87, 1991.
Molinari A, Giorgetti C, Lansen J, Vaghi F, Orsini G, Faioni EM, Mannucci PM. Thrombomodulin is a cofactor for thrombin degradation of recombinant single-chain urokinase plasminogen activator in vitro and in a perfused rabbit heart model. Thromb. Haemost. 69:226-232, 1992.
Miller KG. A role for moesin in polarity. Trends. Cell Biol. 13: 165., 2003.
Nakazawa F, Koyama T, Shibamiya A, Hirosawa S. Characterization of thrombomodulin gene mutations of the 5’-regulatory region. Atherosclerosis. 164: 385-387, 2002.
Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin, thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb. Haemost. 78:386-391, 1997.
Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem. Biophys. Res. Commun. 169:177-183, 1990.
Patthy L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J. Mol. Biol. 202:689-696, 1988.
Petersen T. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51-53, 1988.
Polgar J, Lerant I, Muszbek L, Machovich R. Thrombomodulin inhibits the activation of factor XIII by thrombin. Thromb. Res. 43:685-690, 1986.
Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y and Lentz SR. Thrombomodulin expression by human keratinocytes. J. Clin. Invest. 93:1846-1851, 1994.
Ranganathan R, Lu KP, Hunter T, Noel JP. Structural and functional analysis of the mitotic rotamase Pin1 suggests substrate recognition is phosphorylation dependent. Cell. 89:875–886, 1997.
Reczek D, Berryman M, Bretscher A. Identification of EBP50: a PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J. Cell Biol. 139: 169, 1997.
Sato N, Yonemura S, Obinata T, Tsukita S. Radixin, a barbed end-capping actin -modulating protein, is concentrated at the cleavage furrow during cytokinesis. J. Cell Biol. 113: 321-330, 1991.
Schenk-Braat EA, Morser J, Rijken DC. Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur. J. Biochem. 268:5562-5569, 2001.
Serrador, J. M. et al. Moesin interacts with the cytoplasmic region of intercellular adhesion molecule-3 and is redistributed to the uropod of T lymphocytes during cell polarization. J. Cell Biol. 138: 1409-1423, 1997.
Serrador JM, Vicente-Manzanares M, Calvo J et al. A novel serine-rich motif in the intercellular adhesion molecule 3 is critical for its ezrin/radixin/moesin-directed subcellular targeting. J. Biol Chem. 277:10400-10409, 2002.
Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL. An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J. Biol Chem. 273: 19797, 1998.
Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J. Biochem. 103:281-285, 1988.
Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology. 21:1285-1290, 1995.
Takaishi, K., Sasaki, T., Kameyama, T., Tsukita, S. & Takai, Y. Translocation of activated Rho from the cytoplasm to membrane ruffling area, cell-cell adhesion sites and cleavage furrows. Oncogene. 11:39-48, 1995.
Takahashi K, Sasaki T, Mammoto A, Takaishi K, Kameyama T, Tsukita S, Takai Y. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol Chem. 272: 23371-23375, 1997.
Takeuchi, K., Kawashima, A., Nagafuchi, A. & Tsukita, S. Structural diversity of band 4.1 superfamily members. J. Cell Sci. 107:1921-1928, 1994.
Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol. Cell Biol. 72:480-488, 1994.
Tsukita, S., Oishi, K., Sato, N., Sagara, J. & Kawai, A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actin-based cytoskeletons. J. Cell Biol.126: 391-401, 1994.
Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S, et al. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-4200, 1995.
Tsukita, S. & Yonemura, S. ERM (ezrin/radixin/moesin) family: from cytoskeleton to signal transduction. Curr. Opin. Cell Biol. 9: 70-75, 1997.
Tsukita, S. & Yonemura, S. ERM proteins: head-to-tail regulation of actin- plasma membrane interaction. Trends. Biochem. Sci. 22: 53-58, 1997.
Tsukita, S. & Yonemura, S. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol Chem. 274: 34507-34510, 1999.
Van de Wouwer M, Conway EM. Novel functions of thrombomodulin in inflammation. Crit. Care Med. 32:254-261, 2004.
Watanabe, G. et al. Protein kinase N (PKN) and PKN-related protein rhophilin as targets of small GTPase Rho. Science. 271:645-648,1996.
Weiler-Guettler H, Aird WC, Rayburn H, Husain M, and Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development. 122:2271-2281, 1996.
Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry. 26:4350-4357, 1987.
Wilhelm S, Wilhelm O, Schmitt M, Graeff H. Inactivation of receptor bound pro-urokinase-type plasminogen activator (pro-UPA) by thrombin and thrombin/thrombomodulin complex. Biol. Chem. Hoppe. Seyler. 375:603-608, 1994.
Yonemura, S., Nagafuchi, A., Sato, N. & Tsukita, S. Concentration of an integral membrane protein, CD43 (leukosialin, sialophorin), in the cleavage furrow through the interaction of its cytoplasmic domain with actin-based cytoskeletons. J. Cell Biol. 120: 437-449, 1993.
Yonemura S, Hirao M, Doi Y, Takahashi N, Kondo T, Tsukita S. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43, and ICAM-2. J. Cell Biol. 140: 885-895, 1998.
Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J. Biol Chem. 264:10351-10353, 1989.
Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 101:1301-1309, 1998.