| 研究生: |
張力云 Chang, Lih-Yun |
|---|---|
| 論文名稱: |
創傷弧菌蛋白酶基因vvp啟動子區域內之一反向重複序列對調控子SmcR與其結合及vvp表現之影響 Involvement of an inverted repeats in promoter of Vibrio vulnificus protease gene, vvp, in binding with SmcR and vvp expression |
| 指導教授: |
何漣漪
hor, Lien-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 創傷弧菌 、調控子 、蛋白酶基因 |
| 外文關鍵詞: | vvp, SmcR, Vibrio vulnificus |
| 相關次數: | 點閱:159 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
創傷弧菌為棲息在海水環境中之細菌,會造成人類嚴重的傷口感染和致命性的敗血症。本實驗室先前的研究發現在創傷弧菌內有一個調控子SmcR,具有調控蛋白酶基因vvp以及細胞溶解毒素的功能,而進一步利用DNase I footprint analysis分析發現SmcR與vvp 啟動子區域結合的位置涵蓋了49個鹼基對 (-35~-83),且在此區域有一不完美之inverted repeats序列存在而當中有14個鹼基對 (spacer) 將它們隔開。為了了解這些inverted repeats序列與SmcR結合的關聯性,我們利用site-directed mutagenesis的方式,在vvp啟動子此區域,置入七個不同的點突變,並在其下游與lacZ融合,再將含此構造的DNA片段插入一自殺質體,然後藉由創傷弧菌染色體上之lacZ與質體上的lacZ部分,進行homologous recombination使質體插入染色體中,而產生一系列的突變菌株。從測試B-galactosidase活性的結果顯示,四個發生在vvp啟動子區域之inverted repeats上的點突變,造成vvp的表現活性下降;相反的,其餘三個點突變,其中一個在inverted repeats區域,兩個在spacer中之菌株,其vvp的表現不受影響。然而,從EMSA實驗觀察這些具有點突變的vvp啟動子區域與SmcR作用發現,不論vvp啟動子區域攜帶那些點突變,都具有與SmcR結合的能力。因此,我們推測在創傷弧菌vvp啟動子上之inverted repeats序列與SmcR之間的結合以及基因的表現,可能需要透過其它因子的參與來達成。
另一方面,我們發現在SmcR上第39至59個之胺基酸與LuxR家族中的之helix-turn-helix (HTH) DNA-binding domain 具有很高的相似性。為了了解SmcR HTH區域在與vvp啟動子區域之間的結合上所扮演的角色,我們建構了攜帶不同smcR片段的質體。很意外的,當我們在帶有vvp啟動子區域與lacZ 融合片段且smcR缺失的菌株中由質體表現smcR63-205以及 smcR101-205時,雖然它們在HTH區域有缺失,但仍具有活化vvp啟動子的功能;然而在表現smcR32-205以及smcR1-99時,即使它們HTH區域還存在,但卻喪失活化vvp啟動子的能力。另外,我們也將不同的smcR片段在vvp啟動子區域上含有不同點突變的菌株中表現。結果發現,在表現smcR63-205時,lacZ在不同突變株內的表現模式與表現完整SmcR的菌株相同;而在表現smcR101-205時,LacZ的活性在不同的點突變間並無明顯的差異。我們進一步純化出不含HTH區域之蛋白質SmcR63-205,利用EMSA試驗此蛋白質是否能與帶有不同點突變之vvp啟動子區域之結合,結果發現SmcR63-205與SmcR一樣,皆能與帶有不同點突變之vvp啟動子結合。從以上的結果我們推測,SmcR C端的區域可能較HTH區域在與DNA間的結合以及調控基因的表現上扮演更重要的角色。
Abstract
We have found previously that SmcR, a transcriptional activator, is involved in the regulation of the metalloprotease (vvp) and cytolysin genes in Vibrio vulnificus, a marine bacterium causing wound infections and fatal septicemia. The putative SmcR-binding site in the vvp promoter region has been identified by DNase I footprint analysis, in which an inverted repeat sequence with a spacer of 14 bp was found. To determine the involvement of this inverted repeat region in binding with SmcR and transcriptional activation of vvp, seven point mutations at different positions in this region were created. The promoter mutations together with a downstream lacZ gene (Pvvp-lacZ) that served as the reporter were cloned individually into a suicide plasmid and subsequently introduced into V. vulnificus chromosome via homologous recombination between the lacZ gene in the plasmid and that in the chromosome. By assaying the B-galactosidase activity in these strains, we found that four mutations that were located in the inverted repeats resulted in significant decreases in vvp promoter activity. However, another mutation in the inverted repeat and two mutations in the spacer did not affect the vvp promoter activity. We further examined the binding of SmcR to vvp promoter with the various mutations in this region by electrophoresis motive shift assay (EMSA). There was little difference between the wild type vvp promoter and the mutated ones, even those showing reduced vvp promoter activity, in binding with SmcR. One explanation for this inconsistency is that other factors may be involved in binding with vvp promoter region and regulation of vvp expression.
On the other hand, the amino acid sequence from residues 39 to 59 of SmcR showed significant homology to the helix turn helix (HTH) DNA-binding domains of LuxR family. To determine the role of this putative HTH domain in binding with vvp promoter, five SmcR mutants were generated. Surprisingly, when expressed from a plasmid in the strain with a Pvvp-lacZ fusion, SmcR devoid of the HTH domain, namely, SmcR63-205 and SmcR101-205, retained the ability to activate the vvp promoter. On the contrary, those containing the HTH domain, SmcR29-205 and SmcR1-99, did not activate the vvp promoter. Furthermore, when combined with the various vvp promoter mutations, the B-galactosidase expression patterns of SmcR63-205 were similar to those of the intact SmcR. However, for some reason not clear at this moment, the B-galactosidase expression levels of the various vvp promoter mutants were similar to one another in the presence of SmcR101-205. We further examined the binding of SmcR63-205 to the vvp promoter with the various mutations by EMSA, and found that just like the intact SmcR, it bound to all the mutated promoter sequences. These results suggest that the SmcR C-terminal domain may be more important than the HTH domain for binding with and activation of vvp promoter.
Amaro, C., Biosca, E.G., Fouz, B., and Garay, E. Electrophoretic analysis of heterogeneous lipopolysaccharides from various strains of Vibrio vulnificus biotypes 1 and 2 by silver staining and immunoblotting. Curr Microbiol 25: 99-104, (1992).
Amaro, C., Biosca, E.G., Fouz, B., Toranzo, A.E., and Garay, E. Role of iron, capsule, and toxins in the pathogenicity of Vibrio vulnificus biotype 2 for mice. Infect Immun 62: 759-763, (1994).
Amaro, C., and Biosca, E.G. Vibrio vulnificus biotype 2, pathogenic for eels, is also an opportunistic pathogen for humans. Appl Environ Microbiol 62: 1454-1457, (1996).
Amaro, C., Hor, L.I., Marco-Noales, E., Bosque, T., Fouz, B., and Alcaide, E. Isolation of Vibrio vulnificus serovar E from aquatic habitats in Taiwan. Appl Environ Microbiol 65: 1352-1355, (1999).
Bisharat, N., Agmon, V., Finkelstein, R., Raz, R., Ben-Dror, G., Lerner, L., Soboh, S., Colodner, R., Cameron, D.N., Wykstra, D.L., Swerdlow, D.L., and Farmer, J.J., 3rd Clinical, epidemiological, and microbiological features of Vibrio vulnificus biogroup 3 causing outbreaks of wound infection and bacteraemia in Israel. Israel Vibrio Study Group. Lancet 354: 1421-1424, (1999).
Blake, P.A., Merson, M.H., Weaver, R.E., Hollis, D.G., and Heublein, P.C. Disease caused by a marine Vibrio. Clinical characteristics and epidemiology. N Engl J Med 300: 1-5, (1979).
Bolivar, F., Rodrigues, R. L., Greene, M. C., Betlach, H. L. Heyneker, H. W., Boyer, J.H., and Falkow, S. Construction and characterization of new cloning vehicles. II. A multipurpose cloning system. Gene 2: 95, (1977).
Bullen, J.J., Spalding, P.B., Ward, C.G., and Gutteridge, J.M. Hemochromatosis, iron and septicemia caused by Vibrio vulnificus. Arch Intern Med 151: 1606-1609, (1991).
Cantinieaux, B., Boelaert, J.R., De Meuleneire, J., Kerrels, V., and Fondu, P. Neutrophils from patients with secondary haemosiderosis contain excessive amounts of autotoxic iron. Eur J Haematol 51: 161-165, (1993).
Chae, M.R., Park, B.H., Kim, J.S., Rho, H.W., Park, J.W., and Kim, H.R. Protective effect of C-reactive protein against the lethality induced by Vibrio vulnificus lipopolysaccharide. Microbiol Immunol 44: 335-340, (2000).
Chan, T.Y., Chow, D.P., Ng, K.C., Pang, K.W., and McBride, G.A. Vibrio vulnificus septicemia in a patient with liver cirrhosis. Southeast. Asian J. Tropl. Med.Public Health. 25: 215-216, (1994).
Chatterjee, M., Miyamoto, C. M. and Meighen, E. A. Autoregulation of luxR: the Vibrio harveyi lux-operon activator function as a repressor. Mol. Microbiol. 20: 415-425, (1996).
Chen, C.Y., Buchmeier, N.A., Libby, S., Fang, F.C., Krause, M., and Guiney, D.G. Central regulatory role for the RpoS sigma factor in expression of Salmonella dublin plasmid virulence genes. J Bacteriol 177: 5303-5309, (1995).
Chen, C.Y., Wu, K.M., Chang, Y.C., Chang, C.H., Tsai, H.C., Liao, T.L., Liu, Y.M., Chen, H.J., Shen, A.B., Li, J.C., Su, T.L., Shao, C.P., Lee, C.T., Hor, L.I., and Tsai, S.F. Comparative genome analysis of Vibrio vulnificus, a marine pathogen. Genome Res 13: 2577-2587, (2003).
Cheng, J.C., Shao, C.P., and Hor, L.I. Cloning and nucleotide sequencing of the protease gene of Vibrio vulnificus. Gene 183: 255-257, (1996).
Dalsgaard, I., Hoi, L., Siebeling, R.J., and Dalsgaard, A. Indole-positive Vibrio vulnificus isolated from disease outbreaks on a Danish eel farm. Dis Aquat Organ 35: 187-194, (1999).
Davison, J., Heusterspreute, M., Chevalier, N., Ha-Thi, V., and Brunel, F. Vectors with restriction site banks. V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280, (1987).
Donnenberg, M.S., and Kaper, J.B. Construction of an eae delection mutant of enteropathogenic Escherichia coli by using a positive-selection suicide vector. Infect Immun 59: 4310-4317, (1991).
Elmore, S.P., Watts, J.A., Simpson, L.M., and Oliver, J.D. Reversal of hypotension induced by Vibrio vulnificus lipopolysaccharide in the rat by inhibition of nitric oxide synthase. Microb Pathog 13: 391-397, (1992).
Gray, L.D., and Kreger, A.S. Detection of Vibrio vulnificus cytolysin in V. vulnificus-infected mice. Toxicon 27: 439-464, (1989).
Halow, K.D., Harner, R.C., and Fontenelle, L.J. Primary skin infections secondary to Vibrio vulnificus: the role of operative intervention. J Am Coll Surg 183: 329-334, (1996).
Hanahan, D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166: 557-580, (1983).
Hayat, U., Reddy, G.P., Bush, C.A., Johnson, J.A., Wright, A.C., and Morris, J.G., Jr. Capsular types of Vibrio vulnificus: an analysis of strains from clinical and environmental sources. J Infect Dis 168: 758-762, (1993).
Hlady, W.G., Mullen, R.C., and Hopkin, R.S. Vibrio vulnificus from raw oysters. Leading cause of reported deaths from foodborne illness in Florida. J Fla Med Assoc 80: 536-538, (1993).
Hlady, W.G., and Klontz, K.C. The epidemiology of Vibrio infections in Florida, 1981-1993. J Infect Dis 173: 1176-1183, (1996).
Hollis, D.G., Weaver, R.E., Baker, C.N., and Thornsberry, C. Halophilic Vibrio species isolated from blood cultures. J Clin Microbiol 3: 425-431, (1976)
Hor, L.I., Chang, Y.K., Chang, C.C., Lei, H.Y., and Ou, J.T. Mechanism of high susceptibility of iron-overloaded mouse to Vibrio vulnificus infection. Microbiol Immunol 44: 871-878, (2000).
Hsueh, P.R., Lin, C.Y., Tang, H.J., Lee, H.C., Liu, J.W., Liu, Y.C., and Chuang, Y.C. Vibrio vulnificus in Taiwan. Emerg Infect Dis 10: 1363-1368, (2004).
Iriarte, M., Stainier, I., and Cornelis, G.R. The rpoS gene from Yersinia enterocolitica and its influence on expression of virulence factors. Infect Immun 63: 1840-1847, (1995).
Janda, J.M., Powers, C., Bryant, R.G., and Abbott, S.L. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin Microbiol Rev 1: 245-267, (1988).
Jeong, H.S., Jeong, K.C., Choi, H.K., Park, K.J., Lee, K.H., Rhee, J.H., and Choi, S.H. Differential expression of Vibrio vulnificus elastase gene in a growth phase-dependent manner by two different types of promoters. J Biol Chem 276: 13875-13880, (2001).
Jeong, H.S., Lee, M.H., Lee, K.H., Park, S.J., and Choi, S.H. SmcR and cyclic AMP receptor protein coactivate Vibrio vulnificus vvpE encoding elastase through the RpoS-dependent promoter in a synergistic manner. J Biol Chem 278: 45072-45081, (2003)
Jobling, M.G., and Holmes, R.K. Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 26: 1023-1034, (1997).
Kaspar, C.W., and Tamplin, M.L. Effects of temperature and salinity on the survival of Vibrio vulnificus in seawater and shellfish. Appl Environ Microbiol 59: 2425-2429, (1993).
Kim, Y.R., Kim, S.S., Lee, S.E., and Rhee, J.H. Analysis of the potential functional domains and identification of host binding partners of Vibrio vulnificus RtxA toxin. Abstr. Annu. Meet. Am. Soc. Microbiol. B-142, (2004).
Klontz, K.C., Lieb, S., Schreiber, M., Janowski, H.T., Baldy, L.M., and Gunn, R.A. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann Intern Med 109: 318-323, (1988).
Ko, W.C., Chuang, Y.C. Aeromonas bacteremia: review of 59 episodes. Clin Infect. Dis 20: 1289-1304, (1995).
Kreger, A., and Lockwood, D. Detection of extracellular toxin(s) produced by Vibrio vulnificus. Infect Immun 33: 583-590, (1981).
Kumamoto, K.S., and Vukich, D.J. Clinical infections of Vibrio vulnificus: a case report and review of the literature. J Emerg Med 16: 61-66, (1998).
Lange, R., and Hengge-Aronis, R. Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5: 49-59, (1991).
Lee, N.Y. Nucleotide sequencing of phospholipase gene in Vibrio vulnificus and isolation and characterization of mutants deficient in phospholipase. MS. National Chang Kong University, Tainan, Taiwan. (2000).
Lee, S.E., Kim, S. Y., Kim, C. B., Chung, S. S., and Rhee, J. H. Cytotoxic mechanisms of Vibrio vulnificus RTX toxin, a newly discovered key virulence factor. Abstr. Annu. Meet. Am. Soc. Microbiol. B-57, (2003).
Linkous, D.A., and Oliver, J.D. Pathogenesis of Vibrio vulnificus. FEMS Microbiol Lett 174: 207-214, (1999).
McDougald, D., Rice, S.A., and Kjelleberg, S. The marine pathogen Vibrio vulnificus encodes a putative homologue of the Vibrio harveyi regulatory gene, luxR: a genetic and phylogenetic comparison. Gene 248: 213-221, (2000).
McDougald, D., Rice, S.A., and Kjelleberg, S. SmcR-dependent regulation of adaptive phenotypes in Vibrio vulnificus. J Bacteriol 183: 758-762, (2001).
McPherson, V.L., Watts, J.A., Simpson, L.M., and Oliver, J.D. Physiological effects of the lipopolysaccharide of Vibrio vulnificus on mice and rats. Microbiol. 67: 141-149, (1991).
Miyoshi, N., Miyoshi, S., Sugiyama, K., Suzuki, Y., Furuta, H., and Shinoda, S. Activation of the plasma kallikrein-kinin system by Vibrio vulnificus protease. Infect Immun 55: 1936-1939, (1987a).
Miyoshi, N., Shimizu, C., Miyoshi, S., and Shinoda, S. Purification and characterization of Vibrio vulnificus protease. Microbiol Immunol 31: 13-25, (1987b).
Miyoshi, S., Narukawa, H., Tomochika, K., and Shinoda, S. Actions of Vibrio vulnificus metalloprotease on human plasma proteinase-proteinase inhibitor systems: a comparative study of native protease with its derivative modified by polyethylene glycol. Microbiol Immunol 39: 959-966, (1995).
Miyoshi, S., Wakae, H., Tomochika, K., and Shinoda, S. Functional domains of a zinc metalloprotease from Vibrio vulnificus. J Bacteriol 179: 7606-7609, (1997).
Miyoshi, S., Nakazawa, H., Kawata, K., Tomochika, K., Tobe, K., and Shinoda, S. Characterization of the hemorrhagic reaction caused by Vibrio vulnificus metalloprotease, a member of the thermolysin family. Infect Immun 66: 4851-4855, (1998).
Miyoshi, S., and Shinoda, S. Microbial metalloproteases and pathogenesis. Microbes Infect 2: 91-98, (2000).
Nagai, S., Yagihashi, T., and Ishihama, A. An avian pathogenic Escherichia coli strain produces a hemolysin, the expression of which is dependent on cyclic AMP receptor protein gene function. Vet Microbiol 60: 227-238, (1998).
Nishina, Y., Miyoshi, S., Nagase, A., and Shinoda, S. Significant role of an exocellular protease in utilization of heme by Vibrio vulnificus. Infect Immun 60: 2128-2132, (1992).
Okujo, N., Akiyama, T., Miyoshi, S., Shinoda, S., and Yamamoto, S. Involvement of vulnibactin and exocellular protease in utilization of transferrin- and lactoferrin-bound iron by Vibrio vulnificus. Microbiol Immunol 40: 595-598, (1996).
Oliver, J.D., Wear, J.E., Thomas, M.B., Warner, M., and Linder, K. Production of extracellular enzymes and cytotoxicity by Vibrio vulnificus. Diagn Microbiol Infect Dis 5: 99-111, (1986).
Osaka, K., Komatsuzaki, M., Takahashi, H., Sakano, S., and Okabe, N. Vibrio vulnificus septicaemia in Japan: an estimated number of infections and physicians' knowledge of the syndrome. Epidemiol Infect 132: 993-996, (2004).
Powell, J.L., Wright, A.C., Wasserman, S.S., Hone, D.M., and Morris, J.G., Jr. Release of tumor necrosis factor alpha in response to Vibrio vulnificus capsular polysaccharide in in vivo and in vitro models. Infect Immun 65: 3713-3718, (1997).
Rhee, J.H., Kim, S.Y., Kim, C.M., and Chung, S. S., Vibrio vulnificus RTX toxin, a newly discovered key virulence factor, causes cytoskeletal rearrangement of host cells. Abstr. Annu. Meet. Am. Soc. Microbiol. B-285: 81, (2002).
Rhee, J.H., Kim, Y.R., Kim, S.Y., Kim, C.M., Jin, Y.S., Lee, S.E., and Chung, S. S., RTX toxin is a key virulence factor in Vibrio vulnificus pathogenesis. Abstr. Annu. Meet. Am. Soc. Microbiol. B-325: 113-114, (2001).
Rickman, L., Scott, C., Hunt, D.M., Hutchinson, T., Menendez, M.C., Whalan, R., Hinds, J., Colston, M.J., Green, J., and Buxton, R.S. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol 56: 1274-1286, (2005).
Shao, C.P., and Hor, L.I. Metalloprotease is not essential for Vibrio vulnificus virulence in mice. Infect Immun 68: 3569-3573, (2000).
Shao, C.P. Regulation of Vibrio vulnificus metalloprotease (Vvp) expression and role of Vvp in pathogenesis. PhD. National Chang Kong University,Tainan, Taiwan. (2001).
Shao, C.P., and Hor, L.I. Regulation of metalloprotease gene expression in Vibrio vulnificus by a Vibrio harveyi LuxR homologue. J Bacteriol 183: 1369-1375, (2001).
Shigekawa, K., and Dower, W.J. Electroporation of eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells. Biotechniques 6: 742-751, (1988).
Shin, N.R., Lee, D.Y., Shin, S.J., Kim, K.S., and Yoo, H.S. Regulation of proinflammatory mediator production in RAW264.7 macrophage by Vibrio vulnificus luxS and smcR. FEMS Immunol Med Microbiol 41: 169-176, (2004).
Shin, S.H., Shin, D.H., Ryu, P.Y., Chung, S.S., and Rhee, J.H. Proinflammatory cytokine profile in Vibrio vulnificus septicemic patients' sera. FEMS Immunol Med Microbiol 33: 133-138, (2002).
Simon, R., Prifer, U., and Puhler, A. A broad range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1: 784-791, (1983).
Simpson, L.M., and Oliver, J.D. Siderophore production by Vibrio vulnificus. Infect Immun 41: 644-649, (1983).
Simpson, L.M., White, V.K., Zane, S.F., and Oliver, J.D. Correlation between virulence and colony morphology in Vibrio vulnificus. Infect Immun 55: 269-272, (1987).
Strom, M.S., and Paranjpye, R.N. Epidemiology and pathogenesis of Vibrio vulnificus. Microbes Infect 2: 177-188, (2000).
Tacket, C.O., Brenner, F., and Blake, P.A. Clinical features and an epidemiological study of Vibrio vulnificus infections. J Infect Dis 149: 558-561, (1984).
Vollberg, C.M., and Herrera, J.L. Vibrio vulnificus infection: an important cause of septicemia in patients with cirrhosis. South Med J 90: 1040-1042, (1997).
Warnock, E.W., 3rd, and MacMath, T.L. Primary Vibrio vulnificus septicemia. J Emerg Med 11: 153-156, (1993).
Wright, A.C., Simpson, L.M., and Oliver, J.D. Role of iron in the pathogenesis of Vibrio vulnificus infections. Infect Immun 34: 503-507, (1981).
Wright, A.C., Simpson, L.M., Oliver, J.D., and Morris, J.G., Jr. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect Immun 58: 1769-1773, (1990).
Yanisch, P.C., Vieira, J., and Messing, J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33: 103-119, (1985).
Yildiz, F.H., and Schoolnik, G.K. Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 180: 773-784, (1998).
Yoshida, S., Ogawa, M., and Mizuguchi, Y. Relation of capsular materials and colony opacity to virulence of Vibrio vulnificus. Infect Immun 47: 446-451, (1985).