簡易檢索 / 詳目顯示

研究生: 林晏正
Lin, Yan-Cheng
論文名稱: 小波有限元素法在週期變化彈性基底樑的動態分析
Wavelet Finite Element Dynamic Analysis of Beam Structures on Periodic Elastic Foundations
指導教授: 陳聯文
Chen, Lien-Wen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 85
中文關鍵詞: 彈性基底移動負荷
外文關鍵詞: moving load, elastic foundation
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文首先研究如何將小波理論導入有限元素法,並且應用在結構振動的分析。在傳統的有限元素法中,使用多項式當作內插函數來近似結構的位移,單位元素的自由度會被多項式的階數所限制,因於對於要解結構局部高變化梯度的問題就必需提高多項式階數或增加分析的單位元素數目,這都將使計算上更複雜。
      導入有限元素法後應用在彈性基底樑結構的自然振動分析以及承受移動負荷樑結構的動態分析,來驗證小波有限元素法的可行性和優於傳統有限元素法的收斂性。再將小波有限元素法推展到週期性分布彈性基底樑結構的動態特性分析,來討論週期性分布的彈性基底對在樑上所傳遞的振動波之影響,以及各種參數改變對此效果之影響,並探討是否會對移動負荷通過之後產生振動之影響。

      The objective of this dissertation is to study the construction of the wavelet-finite element method. In traditional finite element methods, polynomials are used as interpolation functions to construct an element; the degrees of freedom are restricted by the order of polynomial. When the problem with local high gradient is analyzed by using traditional finite element methods, the higher order polynomial or denser mesh must be employed to ensure the accuracy.
      The wavelet-element is introduced into the finite element procedure and the dynamic problems of a beam structure on an elastic foundation and a beam structure subjected to moving loads. The accuracy and the convergence rate are verified. Then dynamic problems of a beam structure on an elastic foundation subjected moving loads are solved by the present wavelet-element modal to discuss the influence of vibrating wave transmitted on the beam by periodic elastic foundations, and the effect to this phenomenon by changes of several parameters. Furthermore, to discuss whether periodic elastics foundations would affect the vibration produced by passing of moving loads.

    目 錄 摘要 III Abstract IV 符號說明 V 表目錄 VI 圖目錄 VII 第一章 緒論 1-1研究背景 1 1-2文獻回顧 2 1-3本文架構 5 第二章 Debauchies小波函數 2-1小波函數簡介 6 2-2 Debauchies尺度函數及其小波函數之計算 9 2-3 尺度函數微分值 11 2-4 尺度函數動量值 13 2-5 Debauchies小波函數之聯結係數 14 第三章 小波有限元素法在彈性基底樑結構之振動分析 3-1平面樑的運動方程式與邊界條件 28 3-2樑元素-有限元素法在彈性基底樑結構之振動分析 29 3-3 小波有限元素法 32 3-4實例驗証 36 3-5結果與討論 37 3-6結論 37 第四章 小波有限元素法在承受移動負荷樑結構之振動分析 4-1平面樑的運動方程式與邊界條件 48 4-2樑元素-有限元素法在承受移動負荷樑結構之振動分析 49 4-3 小波有限元素法 52 4-4 Newmark直接積分法 58 4-5實例驗證 60 4-6結果與討論 61 第五章 小波有限元素法在承受移動負荷之週期分佈彈性基底樑結構之振動分析 5-1分析模型 67 5-2週期性的分佈彈性基底對振動波傳遞之影響 68 5-3 不同勁度大小之彈性基底對振動波傳遞之影響 69 5-4 組成週期不同之彈性基底樑對振動波傳遞之影響 69 5-5不同週期性分布彈性基底對振動波傳遞之影響 70 5-6 週期性分布彈性基底對移動負荷產生振動之影響 71 第六章 綜合結論 6-1綜合結論 84 6-2未來展望 85 參考文獻 86

    1. J. Morlet, G. Arens, I. Fourgeau, and D. Giard, 1982, ‘‘Wave Propagation and Sampling Theory,’’ Geophysics, Vol. 47, pp. 203-236.

    2. J. Morlet, 1983, ‘‘Sampling Theory and Wave propagation,’’ NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, Vol. I, pp. 233-261.

    3. I. Daubechies, 1988, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 909-996.

    4. Jaffard S., 1992, ‘‘Wavelet Methods for Fast Resolution of Elliptic Problems,’’ SIAM J. Numer. Anal. , Vol.29 No.4, pp. 965-986.

    5. C. Zhiqian and E. Weinan, 1992, ‘‘Hierarchical Method for Elliptic Problems Using Wavelets,’’ Comm. In Appl. Numer. Methods , Vol. 8, pp. 819-825.

    6. E. Bacry, S. Mallat and G. Papanicolaou, 1992, ‘‘A Wavelets Based Space-time Numerical Method for Partial Differential Equations,’’ Mathematical Modeling and Numerical Analysis, Vol. 26, pp. 793-834.

    7. J. C. Xu and W. C. Shann, 1992, ‘‘Wavelet-Galerkin Methods for Two-Point Boundary Value Problems,’’ Numer. Math., Vol. 63, pp. 123-144.

    8. S. Qian and J. Weiss, 1993, ‘‘Wavelets and the Numerical Solution of Boundary Value Problems,’’ Appl. Math. Lett. , Vol. 6, pp. 47-52.

    9. M. Q. Chen, C. Hwang and Y. P. Shih, 1994, ‘‘A Wavelet-Galerkin Method for Solving population balance equations,’’ Computers & Chem. Engineering.

    10. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘A Wavelet-Galerkin Method for Solving Stefan Problems,’’ J. Chinese Inst. Chem. Engrs, Vol. 26, No. 2, pp. 103-117.

    11. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘Identification of A Linear Time-Varying System by A Wavelet-Galerkin Method,’’ Proc. of NSC, ROC-Part A : Physical Science and Engineering.

    12. H. L. Resnikoff, 1989, ‘‘Compactly Supported Wavelets and The Solution of Partial Differential Equations,’’ Tech. Report AD890926, Aware, Inc., Cambridge, USA., Vol. 26, pp. 1-9.

    13. S. Jaffard and Ph. Laurecot, 1992,‘‘Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis,’’ In C. K. Chui (ed), Wavelets-A Tutorial in Theory and Applications , pp. 543-601.

    14. C. Zhiqian and E. Weinan, 1992,‘‘Hierarchical Method for Elliptic Problems Using Wavelet,’’ Communication in Applied Numerical Methods, Vol. 8, pp. 819-825.

    15. W. Dahmen and C. A. Micchelli, 1993,‘‘Using the Refinement Equation for Evaluating Integrals of Wavelets,’’ SIAM J. Math. Anal. , Vol. 30, No. 2, pp. 507-537.

    16. G. Beylkin, 1992,‘‘On the Representation of Operators in Bases of Compactly Supported Wavelets,’’ SIAM J. Math. Anal. , Vol. 29, No. 6, pp. 1716-1740.

    17. A. Lotto, H. L. Resnikoff and E. Tenenbaum, June 1991,‘‘The Evaluation of Connection Coefficients of Compactly Supported Wavelets,’’ in Y. Maday(ed), Proc. of the French-USA Workshop on Wavelets and Turbulence, Princeton University, New York, Springer-Verlag.

    18. K. Amaratunga, J. R. Williams, S. Qian and J. Weiss, 1994,‘‘Wavelet-Galerkin Solutions for One-Dimensional Partial Differnetial Equations,’’ Int. J. for Num. Methods in Engineering, Vol. 37, pp. 2703-2716.

    19. J. Ko, A. J. Kurdial and M. S. Pilant, 1995,‘‘A Class of Finite Element Methods Based Orthonormal, Compactly Supported Wavelets,’’ Computational Mechanics, Vol. 16, pp. 235-244.

    20. Feng Jin and T.Q. Ye, 1999,‘‘Instability Analysis of Prismatic Members by Wavelet-Galerkin Method,’’ Advances in Engineering Software, Vol. 30, pp. 361-367.

    21. O. C. Zienkiewicz and J. P. De, S. R. Gago and D. W. Kelly, 1983,‘‘The Hierarchical Concept in Finite Element Analysis,’’ Computer and Structures, Vol. 16, pp. 53-65.

    22. O. C. Zienkiewicz and J. Z. Zhu, 1992,‘‘The Super-convergent Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery Technique,’’ Int. J. for Numerical Methods in Engineering, Vol. 33, pp. 1331-1364.

    23. G. Strange, 1989,‘‘ Wavelets and Dilation Equation : A Brief Introduction ,’’ SIAM Review 31 , pp. 614-627.

    24. M. Hetrnyi, “Beams on elastic foundation”, University of Michigan press, Ann Arbor, Michigan , 1946

    25. D.P. Thambiratnam and Y. Zhuge ,“Dynamic analysis of beam on an elastic foundation subjected to moving loads”, Journal of Sound and Vibration, Vol. 198, No.2 , pp. 149-169, 1996.

    26. L. Fryba , “Vibrations of solids and structures under moving loads” , Noordhoff International Publishing, Groningen, The Netherlands, 1999

    27. J.D. Achenbach and C.T. Sun , “Moving load on a flexibly supported Timoshenko beam”, International Journal of Solids and Structures, 1, pp. 353-370,1965

    28. K. Ono and M. Yamada, “Analysis of railway track vibration” , Journal of Sound and Vibration, Vol. 130, No.2 , pp. 269-297, 1989

    29. D.G. Duffy, “The response of an infinite railroad track to a moving, vibrating mass”, Journal of Applied Mechanics, ASME, 57, pp 66-73 , 1990

    30. D.P. Thambiratnam and Y. Zhuge, “Free vibration analysis of beam on elastic foundation”, Computers & Structures , Vol. 60, No.6, pp. 971-980, 1996.

    31. Y.C. Lai, and B.Y. Ting, “Dynamic response of beams on elastic Foundation” Journal of Structural Engineering, Vol. 118, No. 3, pp. 853-858, 1992

    32. J.S. Wu and C.W. Dai, “Dynamic responses of multispan nonuniform beam due to moving loads” Journal of Structural Engineering, Vol.113, No. 3, 1987

    33. 許琳青, 楊永斌, 張荻薇, “簡支橋樑於高速列車作用下之動態反應” 第四屆結構工程研討會, 第785-792頁, 民國87年

    34. 陳志偉, “以有限元素法分析軌道結構於輪-軌互制作用下之反應”, 國立成功大學碩士論文, 民國92年

    35. 林政源, “小波有限元素法在結構振動之應用”, 國立成功大學碩士論文, 民國92年

    下載圖示 校內:2005-08-04公開
    校外:2005-08-04公開
    QR CODE