| 研究生: |
林晏正 Lin, Yan-Cheng |
|---|---|
| 論文名稱: |
小波有限元素法在週期變化彈性基底樑的動態分析 Wavelet Finite Element Dynamic Analysis of Beam Structures on Periodic Elastic Foundations |
| 指導教授: |
陳聯文
Chen, Lien-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 彈性基底 、移動負荷 |
| 外文關鍵詞: | moving load, elastic foundation |
| 相關次數: | 點閱:104 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先研究如何將小波理論導入有限元素法,並且應用在結構振動的分析。在傳統的有限元素法中,使用多項式當作內插函數來近似結構的位移,單位元素的自由度會被多項式的階數所限制,因於對於要解結構局部高變化梯度的問題就必需提高多項式階數或增加分析的單位元素數目,這都將使計算上更複雜。
導入有限元素法後應用在彈性基底樑結構的自然振動分析以及承受移動負荷樑結構的動態分析,來驗證小波有限元素法的可行性和優於傳統有限元素法的收斂性。再將小波有限元素法推展到週期性分布彈性基底樑結構的動態特性分析,來討論週期性分布的彈性基底對在樑上所傳遞的振動波之影響,以及各種參數改變對此效果之影響,並探討是否會對移動負荷通過之後產生振動之影響。
The objective of this dissertation is to study the construction of the wavelet-finite element method. In traditional finite element methods, polynomials are used as interpolation functions to construct an element; the degrees of freedom are restricted by the order of polynomial. When the problem with local high gradient is analyzed by using traditional finite element methods, the higher order polynomial or denser mesh must be employed to ensure the accuracy.
The wavelet-element is introduced into the finite element procedure and the dynamic problems of a beam structure on an elastic foundation and a beam structure subjected to moving loads. The accuracy and the convergence rate are verified. Then dynamic problems of a beam structure on an elastic foundation subjected moving loads are solved by the present wavelet-element modal to discuss the influence of vibrating wave transmitted on the beam by periodic elastic foundations, and the effect to this phenomenon by changes of several parameters. Furthermore, to discuss whether periodic elastics foundations would affect the vibration produced by passing of moving loads.
1. J. Morlet, G. Arens, I. Fourgeau, and D. Giard, 1982, ‘‘Wave Propagation and Sampling Theory,’’ Geophysics, Vol. 47, pp. 203-236.
2. J. Morlet, 1983, ‘‘Sampling Theory and Wave propagation,’’ NATO ASI Series, Issues in Acoustic Signal / Image Processing and Recognition, Vol. I, pp. 233-261.
3. I. Daubechies, 1988, ‘‘Orthogonal Based of Compactly Supported Wavelets,’’ Comm. Pure Appl. Math. , Vol. 41, pp. 909-996.
4. Jaffard S., 1992, ‘‘Wavelet Methods for Fast Resolution of Elliptic Problems,’’ SIAM J. Numer. Anal. , Vol.29 No.4, pp. 965-986.
5. C. Zhiqian and E. Weinan, 1992, ‘‘Hierarchical Method for Elliptic Problems Using Wavelets,’’ Comm. In Appl. Numer. Methods , Vol. 8, pp. 819-825.
6. E. Bacry, S. Mallat and G. Papanicolaou, 1992, ‘‘A Wavelets Based Space-time Numerical Method for Partial Differential Equations,’’ Mathematical Modeling and Numerical Analysis, Vol. 26, pp. 793-834.
7. J. C. Xu and W. C. Shann, 1992, ‘‘Wavelet-Galerkin Methods for Two-Point Boundary Value Problems,’’ Numer. Math., Vol. 63, pp. 123-144.
8. S. Qian and J. Weiss, 1993, ‘‘Wavelets and the Numerical Solution of Boundary Value Problems,’’ Appl. Math. Lett. , Vol. 6, pp. 47-52.
9. M. Q. Chen, C. Hwang and Y. P. Shih, 1994, ‘‘A Wavelet-Galerkin Method for Solving population balance equations,’’ Computers & Chem. Engineering.
10. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘A Wavelet-Galerkin Method for Solving Stefan Problems,’’ J. Chinese Inst. Chem. Engrs, Vol. 26, No. 2, pp. 103-117.
11. M. Q. Chen, C. Hwang and Y. P. Shih, 1995, ‘‘Identification of A Linear Time-Varying System by A Wavelet-Galerkin Method,’’ Proc. of NSC, ROC-Part A : Physical Science and Engineering.
12. H. L. Resnikoff, 1989, ‘‘Compactly Supported Wavelets and The Solution of Partial Differential Equations,’’ Tech. Report AD890926, Aware, Inc., Cambridge, USA., Vol. 26, pp. 1-9.
13. S. Jaffard and Ph. Laurecot, 1992,‘‘Orthonormal Wavelets, Analysis of Operators, and Applications to Numerical Analysis,’’ In C. K. Chui (ed), Wavelets-A Tutorial in Theory and Applications , pp. 543-601.
14. C. Zhiqian and E. Weinan, 1992,‘‘Hierarchical Method for Elliptic Problems Using Wavelet,’’ Communication in Applied Numerical Methods, Vol. 8, pp. 819-825.
15. W. Dahmen and C. A. Micchelli, 1993,‘‘Using the Refinement Equation for Evaluating Integrals of Wavelets,’’ SIAM J. Math. Anal. , Vol. 30, No. 2, pp. 507-537.
16. G. Beylkin, 1992,‘‘On the Representation of Operators in Bases of Compactly Supported Wavelets,’’ SIAM J. Math. Anal. , Vol. 29, No. 6, pp. 1716-1740.
17. A. Lotto, H. L. Resnikoff and E. Tenenbaum, June 1991,‘‘The Evaluation of Connection Coefficients of Compactly Supported Wavelets,’’ in Y. Maday(ed), Proc. of the French-USA Workshop on Wavelets and Turbulence, Princeton University, New York, Springer-Verlag.
18. K. Amaratunga, J. R. Williams, S. Qian and J. Weiss, 1994,‘‘Wavelet-Galerkin Solutions for One-Dimensional Partial Differnetial Equations,’’ Int. J. for Num. Methods in Engineering, Vol. 37, pp. 2703-2716.
19. J. Ko, A. J. Kurdial and M. S. Pilant, 1995,‘‘A Class of Finite Element Methods Based Orthonormal, Compactly Supported Wavelets,’’ Computational Mechanics, Vol. 16, pp. 235-244.
20. Feng Jin and T.Q. Ye, 1999,‘‘Instability Analysis of Prismatic Members by Wavelet-Galerkin Method,’’ Advances in Engineering Software, Vol. 30, pp. 361-367.
21. O. C. Zienkiewicz and J. P. De, S. R. Gago and D. W. Kelly, 1983,‘‘The Hierarchical Concept in Finite Element Analysis,’’ Computer and Structures, Vol. 16, pp. 53-65.
22. O. C. Zienkiewicz and J. Z. Zhu, 1992,‘‘The Super-convergent Patch Recovery and A Posteriori Error Estimates. Part 1: The Recovery Technique,’’ Int. J. for Numerical Methods in Engineering, Vol. 33, pp. 1331-1364.
23. G. Strange, 1989,‘‘ Wavelets and Dilation Equation : A Brief Introduction ,’’ SIAM Review 31 , pp. 614-627.
24. M. Hetrnyi, “Beams on elastic foundation”, University of Michigan press, Ann Arbor, Michigan , 1946
25. D.P. Thambiratnam and Y. Zhuge ,“Dynamic analysis of beam on an elastic foundation subjected to moving loads”, Journal of Sound and Vibration, Vol. 198, No.2 , pp. 149-169, 1996.
26. L. Fryba , “Vibrations of solids and structures under moving loads” , Noordhoff International Publishing, Groningen, The Netherlands, 1999
27. J.D. Achenbach and C.T. Sun , “Moving load on a flexibly supported Timoshenko beam”, International Journal of Solids and Structures, 1, pp. 353-370,1965
28. K. Ono and M. Yamada, “Analysis of railway track vibration” , Journal of Sound and Vibration, Vol. 130, No.2 , pp. 269-297, 1989
29. D.G. Duffy, “The response of an infinite railroad track to a moving, vibrating mass”, Journal of Applied Mechanics, ASME, 57, pp 66-73 , 1990
30. D.P. Thambiratnam and Y. Zhuge, “Free vibration analysis of beam on elastic foundation”, Computers & Structures , Vol. 60, No.6, pp. 971-980, 1996.
31. Y.C. Lai, and B.Y. Ting, “Dynamic response of beams on elastic Foundation” Journal of Structural Engineering, Vol. 118, No. 3, pp. 853-858, 1992
32. J.S. Wu and C.W. Dai, “Dynamic responses of multispan nonuniform beam due to moving loads” Journal of Structural Engineering, Vol.113, No. 3, 1987
33. 許琳青, 楊永斌, 張荻薇, “簡支橋樑於高速列車作用下之動態反應” 第四屆結構工程研討會, 第785-792頁, 民國87年
34. 陳志偉, “以有限元素法分析軌道結構於輪-軌互制作用下之反應”, 國立成功大學碩士論文, 民國92年
35. 林政源, “小波有限元素法在結構振動之應用”, 國立成功大學碩士論文, 民國92年