| 研究生: |
楊徨仁 Yang, Huang-Jen |
|---|---|
| 論文名稱: |
場站尺度建成環境探討台北捷運運量影響因素之研究 The Impact of the Built Environment on Station-level Rail Transit Ridership: the Taipei Metro Case |
| 指導教授: |
石豐宇
Shyr, Oliver |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 大眾運輸旅運量 、建成環境 、多重尺度地理加權迴歸 、大眾運輸導向發展 |
| 外文關鍵詞: | Transit ridership, Built environment, Multiscale geographically weighted regression, Transit-oriented development |
| 相關次數: | 點閱:262 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市運輸與土地使用的關係是長久以來討論的重要議題,一些研究顯示高密度與混合的土地使用可以減少開車意願,配合友善步行與自行車的設計,可增加步行和大眾運輸的使用。然而,當中一個重要的問題是,不同建成環境如何去影響整個都市運輸系統的運量。本研究試圖以過去研究使用的5D建成環境因素在整個都會區分析大眾運輸的運量。該5D因素分別為土地使用密度、多樣性、友善行人與自行車的設計、目的地可及性和轉乘便利性。
本研究以臺北捷運系統作為實證對象,調查共108個場站與其周遭地區,使用來自不同政府機關的資料庫以及開放街圖的POI資料。根據不同範圍進行模型建置,發現以0-600公尺的範圍抓取資料將得出最佳配適度的模型,同時也發現以季運量來做同心圓的分群,配適度更高,解決以往建置模型時樣本數不足的問題。相較於OLS的結果,本研究使用多重尺度地理加權迴歸(Multi-scale geographically weighted regression)來處理變數不同尺度帶寬的問題,以解釋空間異質性的現象。
研究結果顯示,中和、松山、大安與信義一帶的十字路口密度與公車路線數對當地捷運站運量較有顯著正向影響,反而其他變數則較無顯著影響或負向影響;淡水、北投一帶以土地使用多樣性、公共設施與公車路線數呈現顯著正向影響;內湖、新莊與板橋一帶多以人口密度、公共設施呈現顯著正向影響。值得一提的是,中和的人口密度呈現正向顯著影響,推測可能跟中和的高人口密度有關,但卻因為稀少的大型公共設施,中和的行人目的地可及性呈現負向顯著影響。就實務面來說,本研究能在解釋運量影響因素上建立參考的基礎,並應用於大眾運輸導向發展規劃當中。
Over the past few decades of research on relationship between built environment and urban transport, a number of issues have appeared that density development and mixed land use would reduce the choice of private vehicle and encourage the transit system. One key concern for urban planners is how the built envirnment influences on urban transit system at the different neighborhood area. Therefore, our purpose attempts to analyse the different factors of transit ridership at an empirical area by five-D concepts including density, divesity, design, destination accessibility, and distance to transit. This study took Taipei Metro as an example to investigate the factors of built environment on ridership in 108 metro stations. The data consisted of different database of government and Open Street Map from December, 2017 to November, 2018. We compiled this data around station by 600 meters as the best goodness-of-fit model, and conducted seasonal ridership as dependent variables due to the small sample problem. Furthermore, compared with this OLS model, we also developed the multi-scale geographically weighted regression (GWR) in different area to fix the spatial scale problem of coefficient. Our findings indicate the seasonal ridership and repeated independent variables of OLS model in more local area, to some extent, deal with the worse coefficient of determination. To conclude, this study may be of importance in explaining the factors of built environment on transit ridership, and furthor applied for Transit-oriented development (TOD) strategy.
一、中文期刊(按筆劃排序)
林楨家、施亭伃(2007)。大眾運輸導向發展之建成環境對捷運運量之影響-臺北捷運系統之實證研究。運輸計劃季刊,36(4),451-476。doi:10.6402/TPJ.200712.0451
林楨家、楊恩捷(2006)。都市型態對旅運需求影響之結構化分析。運輸學刊,18(4),391-416。doi:10.6383/JCIT.200612.0391
林楨家, & 蕭博正(2006)。台北市土地混合使用特性對旅次發生之影響。臺灣土地研究,9(1),89-114。doi:10.6677/JTLR.200605_9(1).0004
白仁德、劉人華(2014)。大眾運輸導向建成環境特性對捷運運量影響之研究—以臺北捷運為實證對象。建築與規劃學報,15(2/3),111-128。
doi:10.30054/JAP
紀雲曜、李上妤、葉光毅(2004)。公共設施最適服務/影響距離之評估模式。建築與規劃學報,5(2),150-177。doi:10.30054/JAP.200412.0003
二、中文書籍、技術報告書與學位論文(按筆劃排序)
王周偉、崔百勝、張元慶(2017)。空間計量經濟學:現代模型與方法。北京大學出版社。
林楨家、李嘉儂、馮正民、羅健文、蔡耀慶、陳志豪、李欣庭(2011)。都市計畫案綠色運輸衡量指標之研訂。交通部運輸研究所。
施鴻志(1997)。都市規劃。建都文化。
凌瑞賢(2015)。運輸規劃與實務(第三版)。鼎漢國際工程顧問股份有限公司。
三、英文期刊(按字母排序)
An, D., Tong, X., Liu, K., & Chan, E. H. (2019). Understanding the impact of built environment on metro ridership using open source in Shanghai. Cities, 93, 177-187.
https://doi.org/10.1016/j.cities.2019.05.013
Bhat, C. R., & Gossen, R. (2004). A mixed multinomial logit model analysis of weekend recreational episode type choice. Transportation Research Part B: Methodological, 38(9), 767-787. https://doi.org/10.1016/j.trb.2003.10.003
Bhat, C. R., & Guo, J. Y. (2007). A comprehensive analysis of built environment characteristics on household residential choice and auto ownership levels. Transportation Research Part B: Methodological, 41(5), 506-526.
https://doi.org/10.1016/j.trb.2005.12.005
Cardozo, O. D., García-Palomares, J. C., & Gutiérrez, J. (2012). Application of geographically weighted regression to the direct forecasting of transit ridership at station-level. Applied Geography, 34, 548-558.
https://doi.org/10.1016/j.apgeog.2012.01.005
Cervero, R. (2006). Alternative approaches to modeling the travel-demand impacts of smart growth. Journal of the American Planning Association, 72(3), 285-295.
https://doi.org/10.1080/01944360608976751
Cervero, R., & Kockelman, K. (1997). Travel demand and the 3Ds: Density, diversity, and design. Transportation research. Part D, Transport and environment, 2(3), 199-219.
https://doi.org/10.1016/S1361-9209(97)00009-6
Cervero, R., & Murakami, J. (2009). Rail and property development in Hong Kong: Experiences and extensions. Urban Studies, 46(10), 2019-2043.
https://doi.org/10.1177/0042098009339431
Cervero, R., Sarmiento, O. L., Jacoby, E., Gomez, L. F., & Neiman, A. (2009). Influences of built environments on walking and cycling: lessons from Bogotá. International journal of sustainable transportation, 3(4), 203-226.
https://doi.org/10.1016/j.jtrangeo.2016.01.007
Chakour, V., & Eluru, N. (2016). Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal. Journal of Transport Geography, 51, 205-217. https://doi.org/10.1016/j.jtrangeo.2016.01.007
Chakraborty, A., & Mishra, S. (2013). Land use and transit ridership connections: Implications for state-level planning agencies. Land Use Policy, 30(1), 458-469.
https://doi.org/10.1016/j.landusepol.2012.04.017
Chan, Y.-K. (1999). Density, crowding, and factors intervening in their relationship: Evidence from a hyper-dense metropolis. Social Indicators Research, 48(1), 103-124.
https://doi.org/10.1023/A:1006944807696
Chen, Q., Zhao, S., & Higuchi, G. (2018). Analysis on the influence factors of passenger by using small sample size of subway stations. Journal of Architecture and Planning (Transactions of AIJ), 83(747), 907-916. https://doi.org/10.3130/aija.83.907
Choi, J., Lee, Y. J., Kim, T., & Sohn, K. (2012). An analysis of Metro ridership at the station-to-station level in Seoul. Transportation, 39(3), 705-722.
https://doi.org/10.1007/s11116-011-9368-3
Chow, L.-F., Zhao, F., Liu, X., Li, M.-T., & Ubaka, I. (2006). Transit ridership model based on geographically weighted regression. Transportation Research Record, 1972(1), 105-114. https://doi.org/10.1177/0361198106197200113
Ding, C., Wang, D., Liu, C., Zhang, Y., & Yang, J. (2017). Exploring the influence of built environment on travel mode choice considering the mediating effects of car ownership and travel distance. Transportation Research Part A: Policy and Practice, 100, 65-80. https://doi.org/10.1016/j.tra.2017.04.008
Estupiñán, N., & Rodríguez, D. A. (2008). The relationship between urban form and station boardings for Bogota’s BRT. Transportation Research Part A: Policy and Practice, 42(2), 296-306. https://doi.org/10.1016/j.tra.2007.10.006
Ewing, R., & Cervero, R. (2010). Travel and the built environment: A meta-analysis. Journal of the American Planning Association, 76(3), 265-294.
https://doi.org/10.1080/01944361003766766
Ewing, R., & Cervero, R. (2017). “Does compact development make people drive less?” the answer is yes. Journal of the American Planning Association, 83(1), 19-25.
https://doi.org/10.1080/01944363.2016.1245112
Fotheringham, A. S., & Oshan, T. M. (2016). Geographically weighted regression and multicollinearity: dispelling the myth. Journal of Geographical Systems, 18(4), 303-329. https://doi.org/10.1007/s10109-016-0239-5
Fotheringham, A. S., Yang, W., & Kang, W. (2017). Multiscale geographically weighted regression (MGWR). Annals of the American Association of Geographers, 107(6), 1247-1265. https://doi.org/10.1080/24694452.2017.1352480
Gan, Z., Yang, M., Feng, T., & Timmermans, H. J. (2020). Examining the relationship between built environment and metro ridership at station-to-station level. Transportation Research Part D: Transport and Environment, 82, 102332.
https://doi.org/10.1016/j.trd.2020.102332
Greenwald, M. J., & Boarnet, M. G. (2001). Built environment as determinant of walking behavior: Analyzing nonwork pedestrian travel in Portland, Oregon. Transportation Research Record, 1780(1), 33-41. https://doi.org/10.3141/1780-05
Gutiérrez, J., Cardozo, O. D., & García-Palomares, J. C. (2011). Transit ridership forecasting at station level: an approach based on distance-decay weighted regression. Journal of Transport Geography, 19(6), 1081-1092.
https://doi.org/10.1016/j.jtrangeo.2011.05.004
He, Y., Song, Z., Liu, Z., & Sze, N. (2019). Factors influencing electric bike share ridership: analysis of Park City, Utah. Transportation Research Record, 2673(5), 12-22.
https://doi.org/10.1177/0361198119838981
Jiang, R., Lu, Q.-C., & Peng, Z.-R. (2018). A station-based rail transit network vulnerability measure considering land use dependency. Journal of Transport Geography, 66, 10-18. https://doi.org/10.1016/j.jtrangeo.2017.09.009
Jiang, S., Guan, W., He, Z., & Yang, L. (2018). Exploring the intermodal relationship between taxi and subway in Beijing, China. Journal of Advanced Transportation, 2018. https://doi.org/10.1155/2018/3981845
Jun, M.-J., Choi, K., Jeong, J.-E., Kwon, K.-H., & Kim, H.-J. (2015). Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul. Journal of Transport Geography, 48, 30-40.
https://doi.org/10.1016/j.jtrangeo.2015.08.002
Ko, J., Park, D., & Lee, S. (2011). Transit ridership evaluation using aggregate-level causal analyses of subway mode shares in Seoul, South Korea. Transportation Research Record, 2219(1), 59-68. https://doi.org/10.3141/2219-08
Lang, W., Chen, T., Chan, E. H., Yung, E. H., & Lee, T. C. (2019). Understanding livable dense urban form for shaping the landscape of community facilities in Hong Kong using fine-scale measurements. Cities, 84, 34-45.
https://doi.org/10.1016/j.cities.2018.07.003
Li, S., Lyu, D., Huang, G., Zhang, X., Gao, F., Chen, Y., & Liu, X. (2020). Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China. Journal of Transport Geography, 82, 102631.
https://doi.org/10.1016/j.jtrangeo.2019.102631
Lin, J.-J., & Shin, T.-Y. (2008). Does transit-oriented development affect metro ridership? Evidence from Taipei, Taiwan. Transportation Research Record, 2063(1), 149-158.
https://doi.org/10.3141/2063-18
Liu, C., Erdogan, S., Ma, T., & Ducca, F. W. (2016). How to increase rail ridership in Maryland: Direct ridership models for policy guidance. Journal of Urban Planning and Development, 142(4), 04016017.
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000340
Loo, B. P., Chen, C., & Chan, E. T. (2010). Rail-based transit-oriented development: lessons from New York City and Hong Kong. Landscape and Urban Planning, 97(3), 202-212. https://doi.org/10.1016/j.landurbplan.2010.06.002
Ma, X., Zhang, J., Ding, C., & Wang, Y. (2018). A geographically and temporally weighted regression model to explore the spatiotemporal influence of built environment on transit ridership. Computers, Environment and Urban Systems, 70, 113-124.
https://doi.org/10.1016/j.compenvurbsys.2018.03.001
Maria Kockelman, K. (1997). Travel behavior as function of accessibility, land use mixing, and land use balance: evidence from San Francisco Bay Area. Transportation Research Record, 1607(1), 116-125. https://doi.org/10.3141/1607-16
Mitchell Hess, P., Vernez Moudon, A., & Logsdon, M. G. (2001). Measuring land use patterns for transportation research. Transportation Research Record, 1780(1), 17-24.
https://doi.org/10.3141/1780-03
Rajamani, J., Bhat, C. R., Handy, S., Knaap, G., & Song, Y. (2003). Assessing impact of urban form measures on nonwork trip mode choice after controlling for demographic and level-of-service effects. Transportation Research Record, 1831(1), 158-165.
https://doi.org/10.3141/1831-18
Ryan, S., & Frank, L. F. (2009). Pedestrian environments and transit ridership. Journal of Public Transportation, 12(1), 39-57. http://doi.org/10.5038/2375-0901.12.1.3
Shyr, O. F., Andersson, D. E., Cheng, Y.-H., & Hsiao, Y.-H. (2017). What explains rapid transit use? Evidence from 97 urbanized areas. Transportation Research Part A: Policy and Practice, 100(C), 162-169. https://doi.org/10.3141/1831-18
Singhal, A., Kamga, C., & Yazici, A. (2014). Impact of weather on urban transit ridership. Transportation Research Part A: Policy and Practice, 69, 379-391.
https://doi.org/10.1016/j.tra.2017.04.019
Sohn, K., & Shim, H. (2010). Factors generating boardings at metro stations in the Seoul metropolitan area. Cities, 27(5), 358-368.
https://doi.org/10.1016/j.cities.2010.05.001
Stevens, M. R. (2017). Does compact development make people drive less? Journal of the American Planning Association, 83(1), 7-18.
https://doi.org/10.1080/01944363.2016.1240044
Sung, H., Choi, K., Lee, S., & Cheon, S. (2014). Exploring the impacts of land use by service coverage and station-level accessibility on rail transit ridership. Journal of Transport Geography, 36, 134-140. https://doi.org/10.1016/j.jtrangeo.2014.03.013
Sung, H., & Oh, J.-T. (2011). Transit-oriented development in a high-density city: Identifying its association with transit ridership in Seoul, Korea. Cities, 28(1), 70-82.
https://doi.org/10.1016/j.cities.2010.09.004
Taylor, B. D, Miller, D., Iseki, H., & Fink, C. (2003). Analyzing the Determinants of Transit Ridership Using a Two-Stage Least Squares Regression on a National Sample of Urbanized Areas. UC Berkeley: University of California Transportation Center.
https://escholarship.org/uc/item/7xf3q4vh
Taylor, B. D., Miller, D., Iseki, H., & Fink, C. (2009). Nature and/or nurture? Analyzing the determinants of transit ridership across US urbanized areas. Transportation Research Part A: Policy and Practice, 43(1), 60-77. https://doi.org/10.1016/j.tra.2008.06.007
Tsai, Y.-H. (2005). Quantifying urban form: compactness versus' sprawl'. Urban Studies, 42(1), 141-161. https://doi.org/10.1080/0042098042000309748
Vale, D. S., Saraiva, M., & Pereira, M. (2016). Active accessibility: A review of operational measures of walking and cycling accessibility. Journal of transport and land use, 9(1), 209-235. https://doi.org/10.5198/jtlu.2015.593
Wu, X., Lu, Y., Lin, Y., & Yang, Y. (2019). Measuring the destination accessibility of cycling transfer trips in metro station areas: A big data approach. International Journal of Environmental Research and Public Health, 16(15), 2641.
https://doi.org/10.3390/ijerph16152641
Yang, H., Lu, X., Cherry, C., Liu, X., & Li, Y. (2017). Spatial variations in active mode trip volume at intersections: a local analysis utilizing geographically weighted regression. Journal of Transport Geography, 64, 184-194.
https://doi.org/10.3390/ijerph16152641
Zhao, F., Chow, L., Li, M., & Liu, X. (2005). A transit ridership model based on geographically weighted regression and service quality variables. Lehman Center for Transportation Research, Florida International University, Miami, Florida.
https://doi.org/10.1177/0361198106197200113
Zhao, J., Deng, W., Song, Y., & Zhu, Y. (2013). What influences Metro station ridership in China? Insights from Nanjing. Cities, 35, 114-124.
https://doi.org/10.1016/j.cities.2013.07.002
四、英文書籍、技術報告書與學位論文(按字母排序)
Berke, P., Godschalk, D. R., Rodríguez, D. A., & Kaiser, E. J. (2006). Urban Land Use Planning. University of Illinois Press.
Calthorpe, P. (1990). Transit-Oriented Development Design Guidelines. Calthorpe Association, 5.
Calthorpe, P. (1993). The next American metropolis: Ecology, community, and the American dream. Princeton architectural press.
Duckham, M., Goodchild, M. F., & Worboys, M. F. (2003). Foundations of Geographic Information Science. CRC Press.
Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.
Kutner, M. H., Nachtsheim, C. J., & Neter, J. (2003). Applied Linear Regression Models. McGraw-Hill Higher Education.
Maier, G. (2015). Forecasting ridership impacts of transit oriented development at MARTA rail stations. Georgia Institute of Technology.
Nakaya, T., Charlton, M., Lewis, P., Brunsdon, C., Yao, J., & Fotheringham, S. (2017). GWR4 User Manual. 2014: GWR.
Wooldridge, J. M. (2013). Introductory Econometrics: A Modern Approach. South-Western Cengage Learning.
五、網路資源與其他出版品(依筆劃和字母排序)
內政部統計處(2018)。臺北市與新北市最小統計區人口統計。取自社會經濟資料服務平台
https://segis.moi.gov.tw/STAT/Web/Platform/QueryInterface/STAT_QueryInterface.aspx?Type=1#
內政部國土測繪中心(2018)。統計區國土利用調查統計(105~109分類)。取自社會經濟資料服務平台
https://segis.moi.gov.tw/STAT/Web/Platform/QueryInterface/STAT_QueryInterface.aspx?Type=1#
內政部營建署(2016)。各縣市市區人行道路網。取自GIS-T交通網路地理資訊倉儲系統https://gist.motc.gov.tw/gist_web/MapDataService/Retrieval
交通部(2019)。全臺公共自行車租借站(2019年6月)。取自GIS-T交通網路地理資訊倉儲系統https://gist.motc.gov.tw/gist_web/MapDataService/Retrieval
交通部(2018)。公車站牌資料(2018年6月)。取自GIS-T交通網路地理資訊倉儲系統https://gist.motc.gov.tw/gist_web/MapDataService/Retrieval
交通局停車場管理處(2018)。路外停車場。取自GIS-T交通網路地理資訊倉儲系統
https://gist.motc.gov.tw/gist_web/MapDataService/Retrieval
交通局停車場管理處(2018)。路邊停車格。取自GIS-T交通網路地理資訊倉儲系統
https://gist.motc.gov.tw/gist_web/MapDataService/Retrieval
交通部公路總局(2018)。機動車輛登記數統計。取自
https://stat.thb.gov.tw/hb01/webMain.aspx?sys=210&kind=21&type=1&funid=1110007&rdm=dtjloeNU
行政院主計處(2016)。中華民國一○五年工商與服務業普查。
財政部財政資訊中心(2018)。綜合所得稅所得總額各縣市鄉鎮村里統計。取自國網中心資料集平台
https://scidm.nchc.org.tw/dataset/insight_classifiction_dataset_7_9/resource/22ed750e-eb6b-4de1-b89a-6e7844930c33
臺北捷運公司(2017-2018)。各站進出旅運量統計。
取自https://www.metro.taipei/cp.aspx?n=FF31501BEBDD0136
臺北捷運公司(2017-2018)。臺北捷運各站分時進出量統計。
取自http://163.29.157.32:8080/dataset/98d67c29-464a-4003-9f78-b1cbb89bff59
ArcGIS (10.3) [Computer software]. Redlands, CA: Esri.
GeoDa (1.14) [Computer software]. Tempe, AZ: Luc Anselin.
Retreived from https://geodacenter.github.io/index.html
Open Street Map (2020) [Web content]. Retreived from
https://wiki.openstreetmap.org/wiki/Main_Page
Overpass-turbo (2020) [Web open source]. Retreived from https://overpass-turbo.eu/
MGWR (2.2) [Computer software]. Tempe, AZ: Arizona State University.
Mapshaper (2020) [Web open source]. Retreived from https://mapshaper.org/