簡易檢索 / 詳目顯示

研究生: 趙立衡
Jau, Li-Heng
論文名稱: 改善都市通風之建築量體型態策略研究
Building massing strategies for urban ventilation improvement
指導教授: 林子平
Lin, Tzu-Ping
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 都市熱島都市通風建築量體都市設計CFD模擬
外文關鍵詞: Urban heat island, Urban ventilation, Building massing, Urban design, CFD simulations
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在全球暖化的背景下,都市熱島效應(Urban Heat Island)日益嚴重。都市中密集的建物導致氣流停滯,高溫空氣難以排出,人體熱舒適度亦降低。研究指出,建築量體的三維型態(Morphology)對於其周邊氣流的影響甚大,適當地配置建築量體將可改善都市通風。然而,回顧都市風環境相關文獻,可發現多數研究並未針對實務應用的需求設計研究方法,導致研究成果不易應用;實務方面,建築相關從業人員常因欠缺判斷風速、風向等風場情況之基礎知識,無法在不同的基地條件採取合適的量體策略。本研究旨在銜接起學術與實務間的橋梁,建立回應實務需求的研究方法,並發展易於理解與應用的量體策略。
    透過計算流體力學(Computational Fluid Dynamics, CFD)模擬,本研究探討了建築量體型態對於密集都市中氣流的影響,並將模擬結果發展為可供建築設計或都市設計管制內容參考的量體策略,藉此改善都市通風,進而緩解與調適熱島效應造成的負面影響。本研究聚焦於基地尺度,以道路寬度、立面寬度、退縮深度等參數量化描述都市或建築量體的三維型態,針對密集都市中,道路方向與背景風向平行的情境進行研究。經過梳理與簡化臺灣常見都市及建築的三維型態後,本研究歸納了三大量體策略,包含「地面層退縮」、「標準層退縮」以及「縮減立面寬度占比」,並將其導入標準化的量體陣列模型中進行CFD氣流模擬。根據模擬結果探討了道路寬度對於風速的影響,以及以上三種量體策略分別在較窄(10公尺寬)、中等(40公尺寬)、較寬(70公尺寬)的道路下,改善都市通風的效果。
    模擬結果顯示,在道路方向與背景風向平行時,道路上的風速將隨道路寬度增加而提升,而提升的趨勢隨路寬增加而趨緩。在較窄道路中,地面層退縮可明顯提升道路上的風速;在較寬道路中,道路兩側量體若縮減立面寬度占比,則可提高道路兩側街廓內部區域的風速。本研究建議基地鄰接道路與背景風向平行時,若道路較窄(小於40公尺),應優先自道路向後退縮量體,確保都市整體氣流的暢通;若道路較寬(大於等於40公尺),則應優先縮減立面寬度占比,進一步改善街廓內部的通風。

    Building morphology has a significant impact on urban wind environment. Properly configured building mass can improve urban ventilation. However, most previous studies did not carefully consider the needs of practical applications, resulting in limited applicability of research findings. The purpose of this study is to understand the relationship between building morphology and urban ventilation and to develop massing strategies that are easy to understand and apply.
    This study simplifies real urban environments into idealized building array models. Based on the common urban textures in Taiwan, three main strategies are sorted out, including “ground floor setback,” “typical floor setback,” and “reducing façade width ratio.” These three building massing strategies were implemented in the model for computational fluid dynamics (CFD) simulations.
    The simulation results indicate that the wind speed on the road increases as the road width expands when the road is parallel to the prevailing wind direction. However, the rate of increase in wind speed tends to slow down when the road width exceeds 40 meters. In narrow roads (with a width less than 40 meters), ground floor setback significantly enhances the wind speed on the road. In wide roads (with a width greater than or equal to 40 meters), reducing the façade width ratio of building on both sides of the road will increase the wind speed in the inner part of blocks.
    The results of this study can provide architects with valuable references when determining the massing of buildings in site planning. Additionally, they can serve as a scientific basis for governments in establishing urban design guidelines and regulations.

    第一章、緒論 1 第一節、研究背景與動機 1 第二節、研究目的 2 第三節、研究流程 2 第二章、文獻回顧 3 第一節、都市熱島與通風降溫 3 第二節、都市風環境研究回顧 6 第三節、改善都市通風之落實途徑 26 第三章、研究方法 36 第一節、研究範圍界定 36 第二節、模擬情境設計 38 第三節、都市通風評估方式 46 第四節、計算流體力學應用 49 第四章、道路與建築量體型態對都市通風之影響 58 第一節、道路寬度與都市通風之關係 58 第二節、不同道路寬度下量體策略改善都市通風之效果 62 第三節、量體策略對氣流影響之討論與比較 74 第四節、模擬結果彙整 79 第五章、改善都市通風的量體策略與管制應用 80 第一節、量體策略討論 80 第二節、管制應用建議 83 第三節、整合的都市通風策略指引 87 第六章、結論與建議 89 第一節、結論 89 第二節、研究限制與後續建議 90 參考文獻 93 附錄 97 附錄一、臺灣現行都市設計管制規定通風相關管制條文 97 附錄二、模擬結果應用範例 99

    1. American Society of Heating, Refrigerating and Air-Conditioning Engineers (1985). Handbook of Fundamentals, Atlanta, Ga: Author.
    2. American Institute of Architects. (2007). Standard Form of Agreement Between Owner and Architect.
    3. Architectural Institute of Japan. (2007). Guidebook for CFD Predictions of Urban Wind Environment, Validation Benchmark Tests, Retrieved from https://www.aij.or.jp/jpn/publish/cfdguide/index_e.htm (March 26, 2023)
    4. Barlow, J. F. (2014). Progress in observing and modelling the urban boundary layer. Urban Climate, 10, 216-240.
    5. Building Department Hong Kong SAR. (2016). Sustainable Building Design Guidelines (APP-152). Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers.
    6. Blocken, B., Carmeliet, J., & Stathopoulos, T. (2007). CFD evaluation of wind speed conditions in passages between parallel buildings—effect of wall-function roughness modifications for the atmospheric boundary layer flow. Journal of Wind Engineering and Industrial Aerodynamics, 95(9-11), 941-962.
    7. Blocken, B., Stathopoulos, T., & Van Beeck, J. P. A. J. (2016). Pedestrian-level wind conditions around buildings: Review of wind-tunnel and CFD techniques and their accuracy for wind comfort assessment. Building and Environment, 100, 50-81.
    8. Cheng, V., & Ng, E. (2006). Thermal comfort in urban open spaces for Hong Kong. Architectural Science Review, 49(3), 236-242.
    9. Cheng, V., Ng, E., Chan, C., & Givoni, B. (2012). Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. International journal of biometeorology, 56, 43-56.
    10. Counihan, J. O. (1975). Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880–1972. Atmospheric Environment (1967), 9(10), 871-905.
    11. Emmanuel, R. (2012). An urban approach to climate sensitive design: Strategies for the tropics. Taylor & Francis.
    12. Grimmond, C. S. B., & Oke, T. R. (1999). Aerodynamic properties of urban areas derived from analysis of surface form. Journal of Applied Meteorology and Climatology, 38(9), 1262-1292.
    13. Hang, J., Li, Y., & Sandberg, M. (2011). Experimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategy. Journal of Wind Engineering and Industrial Aerodynamics, 99(10), 1036-1055.
    14. He, B. J., Ding, L., & Prasad, D. (2020). Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustainable Cities and Society, 60, 102289.
    15. Heaviside, C., Macintyre, H., & Vardoulakis, S. (2017). The urban heat island: implications for health in a changing environment. Current environmental health reports, 4, 296-305.
    16. Hunt, J. C. R., Poulton, E. C., & Mumford, J. C. (1976). The effects of wind on people; new criteria based on wind tunnel experiments. Building and Environment, 11(1), 15-28.
    17. Kagiya, K., & Ashie, Y. (2009, September). National research project on Kaze-no-michi for city planning: creation of ventilation paths of cool sea breeze in Tokyo. In Second international conference on countermeasures to Urban Heat Islands. Heat Island Group, Berkeley.
    18. Kondo, J., & Yamazawa, H. (1986). Aerodynamic roughness over an inhomogeneous ground surface. Boundary-Layer Meteorology, 35, 331-348.
    19. Landsberg, H. E. (1981). The urban climate. Academic press.
    20. Launder, B. E., & Spalding, D. B. (1975). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3(2), 269-289
    21. Lawson, T.V. and Penwarden, A.D. (1975). The effects of wind on people in the vicinity of buildings, Proceedings of the 4th International Conference on Wind Effects on Buildings and Structures, Cambridge niversity Press, 605-622
    22. Oke, T. R. (1984). Methods in urban climatology. Applied Climatology, 14(18), 19-29.
    23. Oke, T. R. (1987). Boundary layer climates. Routledge.
    24. Oke, T.R. (1988). Street design and urban canopy layer climate. Energy and Buildings 11, 103–113.
    25. Oke, T. R., Mills, G., Christen, A., & Voogt, J. A. (2017). Urban climates. Cambridge University Press.
    26. Palusci, O., Monti, P., Cecere, C., Montazeri, H., & Blocken, B. (2022). Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Science of the Total Environment, 807, 150490.
    27. Rajagopalan, P., Lim, K. C., & Jamei, E. (2014). Urban heat island and wind flow characteristics of a tropical city. Solar Energy, 107, 159-170.
    28. Ramponi, R., Blocken, B., de Coo, L. B., & Janssen, W. D. (2015). CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths. Building and Environment, 92, 152-166.
    29. Reiter, S. (2010). Assessing wind comfort in urban planning. Environment and Planning B: Planning and Design, 37(5), 857-873.
    30. Mochida, A., Tominaga, Y., Ishida, Y., Ishihara, T., Uehara, K., Kataoka, H., ... & Shirasawa, T. (2016). AIJ Benchmarks for Validation of CFD Simulations Applied to Pedestrian Wind Environment around Buildings. Tokyo, Japan: Architectural Institute of Japan.
    31. Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Building and environment, 44(7), 1478-1488.
    32. Ng, E., Yau, R., Wong, K. S., Ren, C., & Katszchner, L. (2012). Final Report of Hong Kong Urban Climatic Map and Standards for Wind Environment-Feasibility Study. Planning Department of Hong Kong Government: Hongkong, China.
    33. Santamouris, M. (2020). Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy and Buildings, 207, 109482.
    34. Stathopoulos, T., Wu, H., & Bédard, C. (1992). Wind environment around buildings: a knowledge-based approach. Journal of Wind Engineering and Industrial Aerodynamics, 44(1-3), 2377-2388.
    35. Tominaga, Y., Mochida, A., Yoshie, R., Kataoka, H., Nozu, T., Yoshikawa, M., & Shirasawa, T. (2008). AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of wind engineering and industrial aerodynamics, 96(10-11), 1749-1761.
    36. Wang, W., Ng, E., Yuan, C., & Raasch, S. (2017). Large-eddy simulations of ventilation for thermal comfort—a parametric study of generic urban configurations with perpendicular approaching winds. Urban climate, 20, 202-227.
    37. Wilson, D. J. (1989). Airflow around buildings. ASHRAE handbook of fundamentals.
    38. Yim, S. H. L., Fung, J. C. H., Lau, A. K. H., & Kot, S. C. (2009). Air ventilation impacts of the “wall effect” resulting from the alignment of high-rise buildings. Atmospheric Environment, 43(32), 4982-4994.
    39. Yuan, C., & Ng, E. (2012). Building porosity for better urban ventilation in high-density cities–A computational parametric study. Building and Environment, 50, 176-189.
    40. 丁于婷(2017)。高層建築量體退縮型態與風環境之影響。﹝碩士論文。國立臺北科技大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/7ns968。
    41. 中華民國風工程學會(2016)。應用高精度數值地形模型進行CFD風場模擬。內政部建築研究所委託研究報告。新北市:內政部建築研究所。
    42. 日本サステナブル建築協会(2010)。CASBEE-HI(ヒートアイランド)評価マニュアル。東京都:建築環境・省エネルギー機構。
    43. 王柳臻(2022)。高解析氣候歷史重建資料於都市規劃及建築設計之應用。﹝碩士論文。國立成功大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/ay3b2t。
    44. 台灣氣候變遷推估資訊與調適知識平台計畫(2021)。統計與動力降尺度方法。國家災害防救科技中心。
    45. 竹林英樹、森山正和、三宅弘祥(2009)。気候資源としての風の利用を目的とした街路形態と街路空間の風通しの関係の分析。日本建築学会環境系論文集,74(635),77-82。
    46. 朱佳仁(2006)。風工程概論。臺北市:科技圖書。
    47. 朱佳仁(2014)。環境流體力學。臺北市:科技圖書。
    48. 成田健一、三上岳彦、菅原広史、本條毅、木村圭司、桑田直也(2004)。新宿御苑におけるクールアイランドと冷気のにじみ出し現象。地理学評論,77(6),403-420_1。
    49. 吳武易(1992)。超高層建築環境影響評估方法之研究—以物理環境影響因子為對象。[碩士論文。國立成功大學]
    50. 林子平(2021)。都市的夏天為什麼愈來愈熱?:圖解都市熱島現象與退燒策略。臺北市:商周。
    51. 林子平(2022)。跳出溫度舒適圈:從狐獴、原始人、蛋炒飯的小故事,教你少開冷氣也能活的21個消暑「涼」方。臺北市:商周。
    52. 林秉毅、鄭兆尊、陳永明、簡毓瑭(2020)。40年高解析度臺灣歷史氣候資料。國家災害防救科技中心。
    53. 林憲德(2017)。熱濕氣候觀點的人居熱環境。臺北市:詹氏。
    54. 邱英浩、吳孟芳(2010)。不同街道尺度對環境風場之影響。都市與計劃,37(4),501-528。
    55. 風工学研究所(1989)。新.ビル風の知識。東京都:鹿島出版會。
    56. 香港綠色建築議會(2017)。香港綠色建築議會都市微氣候指南。香港:作者。
    57. 國土交通省(2013)。ヒートアイランド現象緩和に向けた都市づくりガイドライン。東京都:作者。
    58. 臺北市政府都市發展局(2023)。臺北市開發基地降溫指標及都市設計準則。臺北市:作者。
    59. 歐陽嶠暉(2005)。都市環境學。臺北市:詹氏。

    無法下載圖示 校內:2026-07-01公開
    校外:2026-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE