簡易檢索 / 詳目顯示

研究生: 黃光立
Huang, Guan-Li
論文名稱: 四行程機車引擎熱傳模式分析
Heat Transfer Model for Four-stroke Single-cylinder Spark-Ignition Air-cooled Scooter Engine
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 96
中文關鍵詞: 有限元素分析引擎缸頭汽缸熱通量
外文關鍵詞: F.E.M, heat flux, cylinder, Cylinder head
相關次數: 點閱:107下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究採準穩態模型利用有限元素法進行熱流分析,求解穩態引擎缸頭與缸體熱傳導之溫度場,在不均勻熱傳係數下分析不同熱源造成的溫度分佈差異。透過光陽公司提供的資料作為設定條件,評估引擎操作溫度與分佈均勻性。
    在本文中分為兩組汽缸內熱通量邊界條件來分析缸蓋及汽缸不同截面溫度場與缸內壁和鳍片尖端溫度,並探討熱源均勻分佈之效應,最後將本研究中建立模型之數值解和實驗量測值進行比對。
    結果顯示,熱源分佈的改變對於缸內壁及鳍片尖端溫度隨角度變化趨勢並沒有顯著影響,溫度場梯度分佈由氣冷空氣邊界熱傳係數所主導。引擎轉速八千五百轉下,模擬值與實驗值誤差介於10%內,最準確點誤差0.4%,誤差最大為9.9%。而均勻分佈之熱通量模擬結果有著較大的誤差,誤差值介於4%~17%。

    The paper deals thermal analysis of cylinder head and cylinder with quasi steady model in the condition of different heat transfer coefficient and heat flux distribution. The numerical simulation in this study makes use of the finite element method to solve temperature field of heat conduction. Through the cylinder heat flux distribution data provided by the manufacturer (Kymco Company) and hence estimated the engine operating temperatures and distribution homogeneity. In the research used two cases of cylinder heat flux distribution for boundary conditions to analyze engine different section, cylinder wall, and fin tip temperatures, also discussed uniform heat flux distribution effect. Finally, the numerical values were compared with experimental measurements.

    The results reveal that the change of heat flux distribution influences little about the tendency of temperature changing as the angle of cylinder wall and fin tip, the cooling air heat transfer coefficient governs the temperature distribution. On the condition of engine speed 8500 rpm, the simulation results agree experimental values with an error under 10%, the most accurate point is 0.4%, and the most inaccurate is 9.9%. The uniform heat flux results in a larger error which between 4%~17%.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XII 第一章 緒論 1 1-1-1 前言 1 1-1-2 引擎熱傳遞重要性 3 1-1-3 潤滑與潤滑系統 5 1-2 文獻回顧 6 1-3 本文架構 12 第二章 理論分析 15 2-1 物理模型與基本假設 15 2-2 統御方程式 15 2-3 邊界條件 16 2-4 材料性質設定 27 第三章 數值分析 39 3-1數值方法與模型 39 3-2 有限元素分析 40 第四章 結果與討論 46 4-1 非均勻缸內熱通量分佈之溫度場分析 46 4-2 均勻缸內熱通量分佈之溫度場分析 48 4-3 不同內部熱源分佈之效應 48 4-4 能量守衡分析與實驗值比較 51 第五章 結論 91 參考文獻 92 自述 96

    1. WAVE, Ricardo plc, USA. 2008.
    2. AVL BOOST, AVL company, Austria. 2008.
    3. GT POWER USER MANUAL, VERSION 6.2, Gamma Technologies, Inc. 2006.
    4. AVL FIRE, AVL company, Austria. 2008.
    5. Amsden.A. A, KIVA-3V: A Block-Structured KIVA Program for Engine with Vertical or Canted Valves, “Los Alamos National Laboratory report LA-13313-MS”, 1997.
    6. Abaqus Theory Manual, Version 6.7, ABAQUS, Inc. Dassault Systèmes, 2007.
    7. ANSYS, Inc. USA. 2008.
    8. MSC. Patran, MSC. Software Corporation. USA. 2008.
    9. MSC. Nastran, MSC. Software Corporation. USA. 2008.
    10. Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1995.
    11. Chang, C. L., and Chou, S. F.,“Analysis of Cooling Effect on Irregular Fins of Engines”, International 83 ASME Summer Conference, Modeling and Simulation, 1983.
    12. Chang, M. Y., and Chou, S. F., “An Experimental Study on the Cooling Performance of Air-Cooled Engine”, J. Chinese Soc. Mech. Eng. 6, No. 2, 1985.
    13. Wu, H. W., Chiu, C. P., “Study of Finned-Wall Cylinder Temperature in a Two Stroke Gasoline Engine-Comparison of Analytical and Experimental Results,” SAE Paper 871655, 1989.
    14. 楊政龍,“測量汽缸壁溫及決定散熱鰭片形狀之暫態熱傳技術發展,”國立清華大學動力機械工程研究所, 碩士論文, 1998.
    15. 簡彰信,“液晶熱像法量測引擎散熱鰭片之熱傳係數研究,”國立清華大學動力機械工程研究所, 碩士論文, 1999.
    16. 曾建國,“引擎散熱鰭片之熱傳數值分析,”國立清華大學動力機械工程研究所, 碩士論文, 1999.
    17. Annand, W.J.D., “Heat Transfer in the Cylinders of a Reciprocating Internal Combustion Engine, ” Proc. Instn. Mech. Engrs 177, p. 973, 1963.
    18. Woschni, G., “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine, ” SAE Paper 670931, 1967.
    19. LeFeuvre, T., Myers, P.S., and Uyehara, O.A., “Experimental Instantaneous Heat Fluxes in a Diesel Engine and Their Correlation, ” SAE Paper 690464, 1969
    20. Diwakar,R., “Inviscid Solutions of the Flowfield in an Internal Combustion Engine,” AAIAJournal, Vol. 14,pp. 1667-1768, 1976
    21. Griffin, M.D., “Navier-Stokes solutions of the Flowfield in an Internal Combustion Engine,” AAIAJournal, Vol. 14,pp. 1165-1166,1976
    22. Boni, A.A., “Computer Simulation of Combustion Processes in a Divided-Chamber Stratified Charge Engine,” Acta Astronautica, Vol. 3,pp. 281-292,1976.
    23. Gosman, A.D., “Axisymmetric Flow in a Motored Reciprocating Engine,” Proc. Instn. Mech. Engrs., Vol. 192,pp. 213-223,1978.
    24. Gosman, A.D., and Johns, R.J.R., “Development of a Predictive Tool for In-Cylinder Gas Motion in Engines,” SAE Paper 780315, 1978.
    25. Gosman, A.D., and Johns, R.J.R., “Computer Analysis of Fuel-Air Mixing in Direct-Injection Engines,” SAE Trans. 800091, 1980.
    26. Ahmadi-Befrui, B. Gosman, A.D., Lockwood, F., and Watkins, A.P., “Mutidimensional Calculation of Combustion in an Idealised Homogeneous Charge Engine: a progress Report,” SAE Trans. 810151, 1981.
    27. Gosman, A.D., and Harvey P.S., “Computer Analysis of Fuel-Air Mixing and Combustion in an Axisymmetric D.I. Diesel,” SAE Paper 820036, 1982.
    28. Ramos, J.I., Humphrey, J.A.C., and Sirignano, W.A., “Numerical Prediction of Axisymmetric Laminar and Turbulent Flows in Motored, Reciprocating Internal Combustion Engine,” SAE Trans. 790356, 1979.
    29. Morel, T., and Mansour, N.N., “Modeling of Turbulence in Internal Combustion Engine,” SAE Paper 820040, 1982.
    30. Gosman, A.D., Tsui, Y.Y, and Watkins, A.P., “Caculation of Three Dimensional Air Motion in Motored Engines,” SAE Trans. 840229, 1984.
    31. EI Tahry, S.H., “A Numerical Study on the Effects of Fluid Motion at Inlet Valve Closure on Subsequent Fluid Motion in a Motored Engine,” SAE Paper 820035, 1982.
    32. Bassoli, C., Biaggini, G., Bodritti, G.,and Cornetti, G.M., “Two-Dimensional Combustion Chamber Analysis of Direct Injection Diesel,” SAE Paper 840228, 1984.
    33. Kondoh, T., Fukumoto, A., Ohsawa, K., and Ohkubo, Y., “An Assessment of a Multi-Dimensional Numerical Method to Predict the Flow in Internal Combustion Engines,” SAE Trans. 850500, 1985.
    34. Carpenter, M.H., and Ramos, J.I., “Modeling of a Gasoline-Injected Two-Stroke Cycle Engine,” SAE Trans. 860167, 1986.
    35. Wakisaka, T., Shimamoto, Y., and Isshiki, Y., “Three-Dimensional Numerical Analysis of In-Cylinder Flows in Reciprocating Engines,” SAE Trans. 860464, 1986.
    36. Enomoto, Y., Furuhama, S. and Minakami, K., “Heat Loss to Combustion Chamber Wall of 4-Stroke Gasoline Engine ”, Bulletin of JSME, Vol.28, No.238, pp.647-655,1985
    37. Ikegami, M., Kidoguchi, Y., and Nishiwaki, K., “A Multidimensional Model Prediction of Heat Transfer in Non-Fired Engines,” SAE Paper 860467, 1986.
    38. Dao, K., Uyehara, O.A., and Mayers, P.S., “Heat Transfer Rates at Gas-Wall Interfaces in Motored Piston Engine,” SAE Trans. 730632, 1973.
    39. Morel, T., Wahiduzzaman, S., Tree, D.R, and Dewitt, D.P., “Effect of Speed, Load, and Location on Heat Transfer in a Diesel Engine-Measurement and Predictions,” SAE Paper 870154, 1987.
    40. Gilaber, P., and Pinchon, P., “Measurements and Multidimensional Modeling of Gas-Wall Heat Transfer in a S.I. Engine,” SAE Trans. 880516, 1988.
    41. Yang, J., Pierce, P., Martin, J.K., and Foster, D.E., “Heat Transfer Predictions and Experiments in a Motored Engine,” SAE Trans. 881314, 1988.
    42. Huh, K.Y., Chang, I. P., and Martin, J.K., “A Comparison of Boundary Layer Treatments for Heat Transfer in IC Engines,” SAE Paper 900252, 1990.
    43. Paradis, I., Wagner, J.R., and Marotta, E.E., “Thermal Periodic Contact of Exhaust Valves in Spark Ignition Air-Cooled Engines, ” Journal of Thermophysics and Heat Transfer 16(3), p. 356-365, 2002.
    44. Baniasad, M.S., Khalil, E., and Shen, F., “Exhaust Valve Thermal Management and Robust Design Using Combustion and 3d Conjugate Heat Transfer Simulation with 6-Sigma Methodology, ” SAE Paper 2006-01-0889, 2006.
    45. Dai, W., Davis, G.C., Hall, M.J., and Matthews, R.D., “Diluents and Lean Mixture Combustion Modeling for Si Engines with a Quasi-Dimensional Model, ”SAE Paper 952382, 1995.
    46. Liu, Y. and Reitz, R.D., “Modeling of Heat Conduction within Chamber Walls for Multidimensional Internal Combustion Engine Simulations, ” International Journal of Heat and Mass Transfer 41(6-7), p. 859-869, 1998.
    47. Esfahanian, V., Javaheri, A., and Ghaffarpour, M., “Thermal Analysis of an SI Engine Piston Using Different Combustion Boundary Condition Treatments, ” Applied Thermal Engineering 26(2-3), p. 277-287, 2006.
    48. Chin-Hsiu Li, “Thermal and Mechanical Behavier of an L-4 Engine,” SAE Paper 881149, 1988.
    49. 李進修,“汽機車引擎設計與分析技術,”國立清華大學出版社國立編譯館, 2005.
    50. 林振瑋,“輥輪流平與氣冷式機車引擎熱液動之性能分析,”國立成功大學機械工程研究所, 碩士論文, 2008.

    下載圖示 校內:2010-08-11公開
    校外:2012-08-11公開
    QR CODE