簡易檢索 / 詳目顯示

研究生: 方湛恩
Fang, Chan-En
論文名稱: 以分子模擬探討矽氧烷交聯聚乙二醇架構作為鋰離子電池固態高分子電解質之離子傳遞機制
Ion Transport Mechanisms of Solid Polymer Electrolyte with Silsesquioxane Crosslinking Polyethylene Glycol Framework for Lithium Ion Battery: A Molecular Simulation Study
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 102
中文關鍵詞: 鋰離子電池分子動力學交聯固態高分子電解質矽氧烷
外文關鍵詞: Lithium-ion battery, Molecular dynamic, Cross-linking solid polymer electrolyte, Polyhedral oligomeric silsesquixane
相關次數: 點閱:66下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高分子電解質是近幾十年來電池研究中的熱門主題之一,因其具有尺寸安定性、可撓性、高安全性以及低燃性。但高分子電解質面臨低導電度以及結晶性的挑戰,近期文獻提出以矽氧烷交聯建立網路結構,打亂原有的高分子排序,增加鋰離子的遷移能力。本研究組成使用分子模擬研究以矽氧烷交聯聚乙二醇(PEG)與雙(三氟甲基磺醯)氨基鋰(LiTFSI)之交聯固態高分子電解質,以微觀角度來分析固態高分子電解質之結構以及離子傳遞機制,並且探討交聯比例以及高分子鏈段長度對結構特性以及離子動態特性的影響。
    在電解質區域中,鋰離子周圍約有5.8~5.9個醚氧,證實了PEO對鋰離子的強配位作用力與其溶解鋰鹽的能力。當交聯比例增加,POSS分子之總配位數從1.032降低至0.001,代表POSS與高分子形成的共價鍵產生立體障礙,降低陰離子之吸附。透過空間電位分布圖,提升交聯比例可使交聯固態電解質之電位分佈更均相,且與純高分子電解質相比也更加穩定,有利於鋰離子傳遞。
    動力學特性分析顯示,由於Li+與EO之強配位作用,兩者的擴散係數高度耦合。此外,短鏈PEO呈現似液態特性,有高離子擴散性質。而提升交聯比例,最終鋰離子可解藕Li+與PEO間的擴散移動,並提升固態交聯電解質中鋰離子的遷移能力。此外,POSS分子會限制陰離子的擴散係數,進而使鋰離子遷移數目上升。我們也發現與純高分子電解質相比,全交聯固態高分子能夠提升鋰離子鏈間擴散的次數與機率,使鋰離子有更多的傳遞方式。 PEO20的交聯固態高分子,與純PEO20系統相比有更好的電極/電解質介面電化學穩定度,並且其結構分佈均勻,可降低界面極化現象,並提升鋰離子的漂移速率。本研究提供微觀角度的重要分子特性,並提供設計鋰離子電池交聯固態高分子電解質的重要參考依據。

    Polymer electrolytes have been one of the hot topics in battery research in recent decades, because its dimensional stability, high safety, low flammability, and great flexibility. However, polymer electrolytes face the challenge of low electrical conductivity and due to crystallinity. Recent study showed that using polyhedral oligomeric silsesquixane (POSS) cross-linking polymer network structure can increase the polymer amorphous region and improve the ionic conductivity. In this study, we used molecular simulation to examine the structure and Li+ transport properties of polymer electrolyte composed of the silsesquioxane cross-linking polyethylene glycol (PEG) and lithium bis(trifluoromethanesulfonyl)amide (LiTFSI). From a microscopic point of view, we investigated the ion transport mechanism with solid polymer electrolytes (SPEs) and characterized the effects of the various cross-linking percentage and different chain length.
    In the SPEs, with average 5.8 to 5.9 oxides of PEO around Li+. PEO form strong coordination with Li+ to dissolve lithium salt. POSS within the electrolyte can attract anions and improve the transference number. As the cross-linking percentage increases, the covalent bonded formed on POSS create steric barriers to reduce its interaction with anion. According to result of spatial electrostatic potential distribution analyses, increasing cross-linking with POSS-PEO electrolyte improves the homogeneity, which is beneficial to Li+ transfer.
    The kinetic analyses showed that the diffusion coefficients of Li+ and EO are coupled due to the strong coordination. For a short chain PEO, it is liquid-like with high Li+ mobility. And POSS cross-linking results in the decoupling between the diffusion of Li+ and PEO oxide. Compared to pure polymer electrolytes, fully cross-linked SPE can increase the frequency of Li+ intrachain conduction. In addition, the POSS-PEO20 100% electrolyte system shows better electrochemical stability and uniform structural distribution at the LiFePO4/SPE interface. This results in a reduce interfacial with a higher drift velocity of lithium ions compared to pure PEO20 electrolyte. The presented microscopic views of the ionic transports within cross-linked solid polymeric electrolytes provide important insights into designs of novel polymer electrolytes for lithium-ions batteries.

    摘要 I Abstract II Acknowledgments IV Content V List of Tables VIII List of Figures X List of Symbols XVI Chapter 1 Introduction 1 1.1 Battery History and Development 1 1.2 Working Principle and Structure of Lithium-Ion Battery 5 1.3 Anode Materials 6 1.4 Cathode Materials 6 1.5 Motivation 8 Chapter 2 Literature review 10 2.1 Electrolyte in Lithium-Ion Battery 10 2.1.1 Liquid Electrolyte 10 2.1.2 Gel Polymer Electrolyte 11 2.1.3 Solid Electrolyte 12 2.2 Application of Polymer Electrolytes in LIB 17 2.2.1 Polyethylene Oxide (PEO) 19 2.2.2 Polyvinylidene Difluoride (PVDF) 19 2.2.3 Polyacrylonitrile (PAN) 20 2.3 Improvement Technique for Polymer Electrolytes 22 2.3.1 Physical Treatment 23 2.3.2 Chemical Addition 26 Chapter 3 Method 31 3.1 Molecular Dynamics 31 3.2 POSS-PEO Cross-linking System 33 3.3 Charge Parameters 34 3.4 Equilibrium Simulations 36 3.5 Non-Equilibrium System 38 3.6 Structural Properties 40 3.6.1 Number Density Profiles 40 3.6.2 Radial Distribution Function (RDF) 40 3.6.3 Lithium Ion Coordination Number 41 3.6.4 Electrostatic Potential 41 3.6.5 Free Energy Profile 42 3.6.6 End to End Distance 42 3.6.7 Spatial Stratified Heterogeneity 43 3.7 Dynamical Properties 43 3.7.1 Mean Square Displacement and Self Diffusion Coefficient 43 3.7.2 Li Transference Number 44 3.7.3 Drift Velocity Profile 44 3.7.4 Interchain Conduction 44 Chapter 4 Result and Discussion 45 4.1 Charge Model for Polymer 45 4.1.1 Pure Polymer System 45 4.1.2 Electrolyte System 49 4.2 POSS-PEO Bulk Electrolyte Systems: Structural Properties 52 4.2.1 The Addition of POSS Particles 52 4.2.2 Different Cross-linking Percentage 57 4.2.3 Different Polymer Chain Length of 10, 20, and 40 68 4.3 POSS-PEO Bulk Electrolyte Systems: Dynamics Properties 72 4.3.1 POSS with Different Cross-linking Percentage 72 4.3.2 Different Polymer Chain Length of 10, 20, and 40 75 4.4 Cross-linked SPEs/Cathode Systems 77 4.4.1 Equilibrium Simulation 77 4.4.2 Non-Equilibrium Simulation 79 4.5 Ion Transport Mechanism 85 Chapter 5 Conclusion 88 Reference 90

    [1] M. S. Whittingham, “Electrical Energy Storage and Intercalation Chemistry” vol. 192, 1976.
    [2] J. Goodenough, M. S. Whittingham, “LITHIUM-ION BATTERIES,” THE ROYAL SWEDISH ACADEMY OF SCIENCES, 1–13, 2019.
    [3] N. A. Godshall, I. D. Raistrick, and R. A. Huggins, “Thermodynamic investigations of ternary lithium-transition metal-oxygen cathode materials,” Mater. Res. Bull., vol. 15, no. 5, pp. 561–570, 1980
    [4] K. Mizushima, P. Jones, P.Wiseman, and J. Goodenough, “LixCoO2 (0<x⩽1): A new cathode material for batteries of high energy density,” Solid State Ionics, vol. 3–4, no. Part 1, No. 9B, pp. 171–174, 1981
    [5] K. Ozawa, “Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system,” Solid State Ionics, vol. 69, no. 3–4, pp. 212–221, 1994
    [6] B. J. Landi, M. J. Ganter, C. D. Cress, R. A. Dileo, and R. P. Raffaelle, “Carbon nanotubes for lithium ion batteries,” Energy Environ. Sci., vol. 2, no. 6, pp. 638–654, 2009
    [7] M. Li, J. Lu, Z. Chen, and K. Amine, “30 Years of Lithium-Ion Batteries,” Adv. Mater., vol. 30, no. 33, pp. 1–24, 2018
    [8] P. Voelker, “Trace Degradation Analysis of Lithium-Ion Battery Components,” R&D Mag., no. April, pp. 1–5, 2014.
    [9] W. Luo et al., “A Thermally Conductive Separator for Stable Li Metal Anodes,” Nano Lett., vol. 15, no. 9, pp. 6149–6154, 2015
    [10] Y. Zhang et al., “Dendrite-free lithium deposition with self-aligned nanorod structure,” Nano Lett., vol. 14, no. 12, pp. 6889–6896, 2014
    [11] F. Ding et al., “Dendrite-free lithium deposition via self-healing electrostatic shield mechanism,” J. Am. Chem. Soc., vol. 135, no. 11, pp. 4450–4456, 2013
    [12] C. Monroe and J. Newman, “The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces,” J. Electrochem. Soc., vol. 152, no. 2, p. A396, 2005
    [13] L. A. Selis and J. M. Seminario, “Dendrite formation in Li-metal anodes: An atomistic molecular dynamics study,” RSC Adv., vol. 9, no. 48, pp. 27835–27848, 2019
    [14] M. Tang, P. Albertus, and J. Newman, “Two-Dimensional Modeling of Lithium Deposition during Cell Charging,” J. Electrochem. Soc., vol. 156, no. 5, p. A390, 2009
    [15] S. Flandrois and B. Simon, “Carbon materials for lithium-ion rechargeable batteries,” Carbon N. Y., vol. 37, no. 2, pp. 165–180, 1999
    [16] Q. Wang, H. Li, L. Chen, and X. Huang, “Novel spherical microporous carbon as anode material for Li-ion batteries,” Solid State Ionics, vol. 152–153, pp. 43–50, 2002
    [17] J. R. Dahn, E. W. Fuller, M.O Brovac, and U.V. Sacken, “Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells,” Solid State Ionics, vol. 69, no. 3–4, pp. 265–270, 1994
    [18] D. Doughty and E. P. Roth, “A general discussion of Li Ion battery safety,” Electrochem. Soc. Interface, vol. 21, no. 2, pp. 37–44, 2012
    [19] A. R. Armstrong and P. G. Bruce, “Synthesis of Layered LiMnO2 as an Electrode for Rechargeable Lithium Batteries.,” ChemInform, vol. 27, no. 39, p. no-no, 1996,
    [20] G. Vitins, “Lithium Intercalation into Layered LiMnO” J. Electrochem. Soc., vol. 144, no. 8, p. 2587, 1997
    [21] A. R.Armstrong, N. Dupre, A. J.Paterson, C. P.Grey, and P. G.Bruce, “Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2,” Chem. Mater., vol. 16, no. 16, pp. 3106–3118, 2004,
    [22] A. K. Padhi, “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries,” J. Electrochem. Soc., vol. 144, no. 4, p. 1188, 1997
    [23] C. Yoon, J. T. Bloking, and Y. M. Chiang, “Electronically conductive phospho-olivines as lithium storage electrodes,” Nat. Mater., vol. 1, no. 2, pp. 123–128, 2002
    [24] H. Huang, S. C. Yin, andL. F. Nazar, “Approaching theoretical capacity of LiFePO4 at room temperature at high rates,” Electrochem. Solid-State Lett., vol. 4, no. 10, pp. 170–173, 2001
    [25] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015
    [26] Q. Li, J. Chen, L. Fan, X. Kong, and Y. Lu, “Progress in electrolytes for rechargeable Li-based batteries and beyond,” Green Energy Environ., vol. 1, no. 1, pp. 18–42, 2016
    [27] H. Lundgren, M. Behm, and G. Lindbergh, “ Electrochemical Characterization and Temperature Dependency of Mass-Transport Properties of LiPF6 in EC:DEC ,” J. Electrochem. Soc., vol. 162, no. 3, pp. A413–A420, 2015
    [28] C. Capiglia et al., “7Li and 19F diffusion coefficients and thermal properties of non-aqueous electrolyte solutions for rechargeable lithium batteries,” J. Power Sources, vol. 81–82, pp. 859–862, 1999
    [29] M. Dissanayake, “Conductivity variation of the liquid electrolyte, EC : PC : LiCF3SO3 with salt concentration,” Sri Lankan J. Phys., vol. 7, no. 0, p. 1, 2006
    [30] K. Xu, “Nonaqueous liquid electrolytes for lithium-based rechargeable batteries,” Chem. Rev., vol. 104, no. 10, pp. 4303–4417, 2004
    [31] G. Feuillade and P. Perche, “Ion-conductive macromolecular gels and membranes,” J. Appl. Electrochem., vol. 5, pp. 63–69, 1975.
    [32] W. Li, Y. Wu, J. Wang, D. Huang, L. Chen, and G. Yang, “Hybrid gel polymer electrolyte fabricated by electrospinning technology for polymer lithium-ion battery,” Eur. Polym. J., vol. 67, pp. 365–372, 2015
    [33] X. Peng et al., “A high-performance electrospun thermoplastic polyurethane/poly(vinylidene fluoride-co-hexafluoropropylene) gel polymer electrolyte for Li-ion batteries,” J. Solid State Electrochem., vol. 20, no. 1, pp. 255–262, 2016
    [34] R. Naderi et al., “Activation of Passive Nanofillers in Composite Polymer Electrolyte for Higher Performance Lithium-Ion Batteries,” Adv. Sustain. Syst., vol. 1, no. 8, p. 1700043, 2017
    [35] J. Manuel et al., “Effect of Nano-Sized Ceramic Fillers on the Performance of Polymer Electrolytes Based on Electrospun Polyacrylonitrile Nanofibrous Membrane for Lithium Ion Batteries,” Sci. Adv. Mater., vol. 8, no. 4, pp. 741–748, Apr.2016
    [36] K. Yang, X. Ma, K. Sun, Y. Liu, and F. Chen, “Electrospun octa ( 3-chloropropyl ) -polyhedral oligomeric silsesquioxane-modified polyvinylidene fluoride / poly ( acrylonitrile )/ poly ( methylmethacrylate ) gel polymer electrolyte for high-performance lithium ion battery,” 2017
    [37] B. Liu et al., “A novel porous gel polymer electrolyte based on poly(acrylonitrile-polyhedral oligomeric silsesquioxane) with high performances for lithium-ion batteries,” J. Memb. Sci., vol. 545, no. September 2017, pp. 140–149, 2018
    [38] Y. Huang et al., “Novel gel polymer electrolyte based on matrix of PMMA modified with polyhedral oligomeric silsesquioxane,” J. Solid State Electrochem., vol. 21, no. 8, pp. 2291–2299, 2017
    [39] Y. Wang et al., “Design principles for solid-state lithium superionic conductors,” Nat. Mater., vol. 14, no. 10, pp. 1026–1031, 2015
    [40] R. Murugan, V. Thangadurai, and W.Weppner, “Fast lithium ion conduction in garnet-type Li7La3Zr2O12,” Angew. Chemie - Int. Ed., vol. 46, no. 41, pp. 7778–7781, 2007
    [41] Yoshiyuki INAGUMA, Jianding YU, Tetsuhiro KATSUMATA and Mitsuru ITOH, “Lithium Ion Conductivity in a Perovskite Lanthanum Lithium Titanate Single Crystal, ” Journal of the Ceramic Society of Japan, vol. 105, pp. 548–550, 1997.
    [42] J. L. Fourquet, H. Duroy, and M. P. Crosnier-Lopez, “Structural and Microstructural Studies of the Series La2/3−xLi3x□1/3−2xTiO3,” J. Solid State Chem., vol. 127, no. 2, pp. 283–294,1996
    [43] A. Mei et al., “Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica,” Solid State Ionics, vol. 179, no. 39, pp. 2255–2259, 2008
    [44] N. Kamaya et al., “A lithium superionic conductor,” Nat. Mater., vol. 10, no. 9, pp. 682–686, 2011
    [45] T. Kaib et al., “New lithium chalcogenidotetrelates, LiChT: Synthesis and characterization of the Li+-conducting tetralithium ortho-sulfidostannate Li4SnS4,” Chem. Mater., vol. 24, no. 11, pp. 2211–2219, 2012
    [46] P. Bron, S. Johansson, K. Zick, J. S. A. DerGünne, S.Dehnen, and B.Roling, “Li10SnP2S12: An affordable lithium superionic conductor,” J. Am. Chem. Soc., vol. 135, no. 42, pp. 15694–15697, 2013
    [47] D. E. Fenton, J. M. Parker, and P.V. Wright, “Complexes of alkali metal ions with poly(ethylene oxide),” vol. 14, pp. 589, 1973.
    [48] M. B. Armand, J. M. Chabagno, and M. J. Duclot, “Fast ion transport in solids,” Electrodes Electrolytes, 131., 1979.
    [49] R. Chen, W. Qu, X. Guo, L. Li, and F. Wu, “The pursuit of solid-state electrolytes for lithium batteries: From comprehensive insight to emerging horizons,” Mater. Horizons, vol. 3, no. 6, pp. 487–516, 2016
    [50] B. W. H.Meyer, “Polymer Electrolytes for Lithium-Ion Batteries,” no. 6, pp. 439–448, 1998.
    [51] Z. Gadjourova, Y. G. Andreev, D. P. Tunstall, and P. G. Bruce, “Ionic conductivity in crystalline polymer electrolytes,” vol. 412, no. August, pp. 2–5, 2001.
    [52] 溫添進, “鋰離子高分子電池之研究發展簡述,” 科學發展月刊 第 29卷 第 7期, 2001.
    [53] K. S. Ngai, S. Ramesh, K. Ramesh, and J. C. Juan, “A review of polymer electrolytes : fundamental , approaches and applications,” Ionics (Kiel)., pp. 1259–1279, 2016
    [54] A. Maitra and A. Heuer, “Cation Transport in Polymer Electrolytes : A Microscopic Approach,” vol. 227802, no. June, pp. 1–4, 2007
    [55] F. Alloin, “Electrochemical Behavior of Lithium Electrolytes Based on New Polyether Networks,” J. Electrochem. Soc., vol. 141, no. 7, p. 1915, 1994
    [56] J. Ping, Y. Qiao, H.Tian, Z. Shen, and X. H. Fan, “Synthesis and properties of a coil-g-rod polymer brush by combination of ATRP and alternating copolymerization,” Macromolecules, vol. 48, no. 3, pp. 592–599, 2015
    [57] A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, and M. Watanabe, “High Ionic Conductivity of Polyether-Based Network Polymer Electrolytes with Hyperbranched Side Chains,” Macromolecules, vol. 32, no. 5, pp. 1541–1548, 1999
    [58] J. L. Schaefer, D. A. Yanga, and L. A. Archer, “High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites,” Chem. Mater., vol. 25, no. 6, pp. 834–839, 2013
    [59] Y. Tominaga, Y. Izumi, G. H. Kwak, S. Asai, and M. Sumita, “Effect of supercritical carbon dioxide processing on ionic association and conduction in a crystalline poly(ethylene oxide)-LiCF3SO3 complex” Macromolecules, vol. 36, no. 23, pp. 8766–8772, 2003
    [60] J. Tarascona, “Performance of Bellcore's plastic rechargeable Li-ion baterries” vol. 2738, no. 96, 1996.
    [61] K. Elamin, M. Shojaatalhosseini, O. Danyliv, and A. Martinelli, “Electrochimica Acta Conduction mechanism in polymeric membranes based on PEO or PVdF-HFP and containing a piperidinium ionic liquid,” Electrochim. Acta, vol. 299, pp. 979–986, 2019
    [62] D. Liu, H.Chen, P.Yin, N. Ji, G. Zong, and R. Qu, “Synthesis of polyacrylonitrile by single-electron transfer-living radical polymerization using Fe(0) as catalyst and its adsorption properties after modification,” J. Polym. Sci. Part A Polym. Chem., vol. 49, no. 13, pp. 2916–2923, 2011
    [63] P. Hu, J. Chai, Y. Duan, Z. Liu, G. Cui, and L. Chen, “Progress in nitrile-based polymer electrolytes for high performance lithium batteries,” J. Mater. Chem. A, vol. 4, no. 26, pp. 10070–10083, 2016.
    [64] Z. Wang, B. Huang, R. Xue, X. Huang, and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes,” Solid State Ionics, vol. 121, no. 1, pp. 141–156, 1999
    [65] G. B. Appetecchi, “Electrochim ” Acta, 140, p. 997, 1995
    [66] I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, and E. Cazzanelli, “Investigation of ionic conduction and mechanical properties of PMMA-PVdF blend-based polymer electrolytes,” Solid State Ionics, vol. 177, no. 5–6, pp. 581–588, 2006
    [67] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, and W. Di, “The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries,” J. Memb. Sci., vol. 329, no. 1–2, pp. 56–59, 2009
    [68] S. Rajendran, R. Kannan, and O. Mahendran, “An electrochemical investigation on PMMA/PVdF blend-based polymer electrolytes,” Mater. Lett., vol. 49, no. 3–4, pp. 172–179, 2001
    [69] S. Rajendran, O. Mahendran, and T. Mahalingam, “Thermal and ionic conductivity studies of plasticized PMMA/PVdF blend polymer electrolytes,” Eur. Polym. J., vol. 38, no. 1, pp. 49–55, 2002
    [70] T. Sakakibara et al., “Electrochimica Acta Cross-linked polymer electrolyte and its application to lithium polymer battery,” Electrochim. Acta, vol. 296, pp. 1018–1026, 2019
    [71] Y. Chen et al., “A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries via graft polymerization,” RSC Adv., vol. 8, no. 70, pp. 39967–39975, 2018
    [72] T. Yang, J. Zheng, Q. Cheng, Y.Y. Hu, and C. K. Chan, “Composite Polymer Electrolytes with Li7La3Zr2O12 Garnet-Type Nanowires as Ceramic Fillers: Mechanism of Conductivity Enhancement and Role of Doping and Morphology,” ACS Appl. Mater. Interfaces, vol. 9, no. 26, pp. 21773–21780, 2017
    [73] S.S rivastava, J. L. Schaefer, Z. Yang, Z. Tu, and L. A. Archer, “25th Anniversary article: Polymer-particle composites: Phase stability and applications in electrochemical energy storage,” Adv. Mater., vol. 26, no. 2, pp. 201–234, 2014
    [74] T. Böttcher et al., “Syntheses of novel delocalized cations and fluorinated anions, new fluorinated solvents and additives for lithium ion batteries,” Prog. Solid State Chem., vol. 42, no. 4, pp. 202–217, 2014
    [75] G. H. Newman, R. W. Francis, L. H. Gaines, and B. M. L. Rao, “Technica Hazard Investigations of LiClO / Dioxolane Electrolyte,” J. Electrochem. Soc., vol. 127, no. 9, pp. 2025–2027, 1980
    [76] R. Weber et al., “Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte,” Nat. Energy, pp. 683–689, 2019
    [77] C. A. Secondary, C. Author, S. Yeganegi, and A. Soltanabadi, “chain length on liquid structure and diffusion Molecular dynamic simulation of dicationic ionic liquids : effects of anions and alkyl chain length on liquid structure and diffusion,” J. Phys. Chem. B, vol. 108, no. 6, pp. 2038–2047, 2004
    [78] H. J. C. Berendsen, D.van der Spoel, and R.vanDrunen, “GROMACS: A message-passing parallel molecular dynamics implementation,” Comput. Phys. Commun., vol. 91, no. 1–3, pp. 43–56, Sep.1995
    [79] D. J. Brooks, B.V. Merinov, W. A. Goddard, B. Kozinsky, and J. Mailoa, “Atomistic Description of Ionic Diffusion in PEO-LiTFSI: Effect of Temperature, Molecular Weight, and Ionic Concentration,” Macromolecules, vol. 51, no. 21, pp. 8987–8995, 2018
    [80] W. Humphrey, A. Dalke, and K. Schulten, “VMD: Visual molecular dynamics,” J. Mol. Graph., vol. 14, no. 1, pp. 33–38, Feb.1996
    [81] C. I. Bayly, P. Cieplak, W. D. Cornell, and P. A. Kollman, “A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model,” J. Phys. Chem., vol. 97, no. 40, pp. 10269–10280, 1993
    [82] J.-C. Wang, J.-H. Lin, C.-M. Chen, A. L. Perryman, and A. J. Olson, “Robust Scoring Functions for Protein–Ligand Interactions with Quantum Chemical Charge Models,” J. Chem. Inf. Model., vol. 51, no. 10, pp. 2528–2537, 2011
    [83] N. Sapay, A. Nurisso, and A. Imberty, “Simulation of Carbohydrates, from Molecular Docking to Dynamics in Water,” 2013, pp. 469–483.
    [84] G.V. Dhoke, C. Loderer, M. D. Davari, M. Ansorge-Schumacher, U.Schwaneberg, andM.Bocola, “Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment,” J. Comput. Aided. Mol. Des., vol. 29, no. 11, pp. 1057–1069, 2015
    [85] W. Hu, S. Deng, J. Huang, Y. Lu, X. Le, and W. Zheng, “Intercalative interaction of asymmetric copper(II) complex with DNA: Experimental, molecular docking, molecular dynamics and TDDFT studies,” J. Inorg. Biochem., vol. 127, pp. 90–98, 2013
    [86] J. Wang, P. Cieplak, and P. A. Kollman, “How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?,” J. Comput. Chem., vol. 21, no. 12, pp. 1049–1074, 2000
    [87] F. J. Devlin, P. J. Stephens, J. R. Cheeseman, and M. J. Frisch, “Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: α-Pinene,” J. Phys. Chem. A, vol. 101, no. 51, pp. 9912–9924, 1997
    [88] A. D. Becke, “Density-functional thermochemistry. III. The role of exact exchange,” J. Chem. Phys., vol. 98, no. 7, pp. 5648–5652, 1993
    [89] M. Freindorf, Y. Shao, T. R. Furlani, andJ. Kong, “Lennard-Jones parameters for the combined QM/MM method using the B3LYP/6-31+G*/AMBER potential,” J. Comput. Chem., vol. 26, no. 12, pp. 1270–1278, 2005
    [90] S. M. Bouzzine, S. Bouzakraoui, M. Bouachrine, and M. Hamidi, “Density functional theory (B3LYP/6-31G*) study of oligothiophenes in their aromatic and polaronic states,” J. Mol. Struct. THEOCHEM, vol. 726, no. 1–3, pp. 271–276, 2005
    [91] W. J. Hehre and W. A. Lathan, “Self-Consistent Molecular Orbital Methods. XIV. An Extended Gaussian-Type Basis for Molecular Orbital Studies of Organic Molecules. Inclusion of Second Row Elements,” J. Chem. Phys., vol. 56, no. 11, pp. 5255–5257, 1972
    [92] J. Wang, W. Wang, P. A. Kollman, and D. A. Case, “Automatic atom type and bond type perception in molecular mechanical calculations,” J. Mol. Graph. Model., vol. 25, no. 2, pp. 247–260, 2006
    [93] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, “Development and testing of a general amber force field,” J. Comput. Chem., vol. 25, no. 9, pp. 1157–1174, 2004
    [94] P. H. Lin and R. Khare, “Molecular simulation of cross-linked epoxy and epoxy-POSS nanocomposite,” Macromolecules, vol. 42, no. 12, pp. 4319–4327, 2009
    [95] B. Doherty, X. Zhong, S. Gathiaka, B. Li, and O. Acevedo, “Revisiting OPLS Force Field Parameters for Ionic Liquid Simulations,” J. Chem. Theory Comput., vol. 13, no. 12, pp. 6131–6135, 2017
    [96] A. Allouche, “Software News and Updates Gabedit — A Graphical User Interface for Computational Chemistry Softwares,” J. Comput. Chem., vol. 32, pp. 174–182, 2012
    [97] T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N⋅log( N ) method for Ewald sums in large systems,” J. Chem. Phys., vol. 98, no. 12, pp. 10089–10092, Jun.1993
    [98] W. G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. A, vol. 31, no. 3, pp. 1695–1697, 1985
    [99] S. Nosé, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., vol. 81, no. 1, pp. 511–519, 1984
    [100] M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,” J. Appl. Phys., vol. 52, no. 12, pp. 7182–7190, 1981.
    [101] G. D. Smith, O. Borodin, S. P. Russo, R. J. Rees, and A. F. Hollenkamp, “A molecular dynamics simulation study of LiFePO4/electrolyte interfaces: Structure and Li+ transport in carbonate and ionic liquid electrolytes,” Phys. Chem. Chem. Phys., vol. 11, no. 42, pp. 9884–9897, 2009
    [102] W. M. Brown, P. Wang, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynamics on hybrid high performance computers – short range forces,” Comput. Phys. Commun., vol. 182, no. 4, pp. 898–911, 2011
    [103] W. M. Brown, A. Kohlmeyer, S. J. Plimpton, and A. N. Tharrington, “Implementing molecular dynamics on hybrid high performance computers – Particle–particle particle-mesh,” Comput. Phys. Commun., vol. 183, no. 3, pp. 449–459, 2012
    [104] U. W. Gedde, Polymer Physics. Dordrecht: Springer Netherlands, 1999.
    [105] J. F. Wang, T. L. Zhang, and B. J. Fu, “A measure of spatial stratified heterogeneity,” Ecol. Indic., vol. 67, pp. 250–256, 2016
    [106] K. M. Diederichsen, E. J. McShane, and B. D. McCloskey, “Promising Routes to a High Li+ Transference Number Electrolyte for Lithium Ion Batteries,” ACS Energy Lett., vol. 2, no. 11, pp. 2563–2575, 2017
    [107] Z. Liu, J. Timmermann, K. Reuter, and C.S cheurer, “Benchmarks and Dielectric Constants for Reparametrized OPLS and Polarizable Force Field Models of Chlorinated Hydrocarbons,” J. Phys. Chem. B, vol. 122, no. 2, pp. 770–779, 2018
    [108] C. Caleman, P. J. Maaren, M. Hong, J. S. Hub, L. T.Costa, and D. van der Spoel, “Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant,” J. Chem. Theory Comput., vol. 8, no. 1, pp. 61–74, Jan.2012
    [109] N. Koizumi and T. Hanai, “Dielectric Properties of Polyethylene Glycols : Dielectric Relaxation in Solid State,” Вестник Казнму, vol. №3, pp. 115–127, 1964
    [110] N. S. V. Barbosa, Y. Zhang, E. R. A. Lima, F. W. Tavares, and E. J. Maginn, “Development of an AMBER-compatible transferable force field for poly(ethylene glycol) ethers (glymes),” J. Mol. Model., vol. 23, no. 6, 2017
    [111] “Polyethylene glycol [MAK Value Documentation, 1998],” The MAK Collection for Occupational Health and Safety, vol. 10 (Wiley-VCH Verlag GmbH & Co., Weinheim, 2012), pp. 248–270.
    [112] Y. Tsujita, T. Nose, and T. Hata, “Thermodynamic properties of poly(ethylene glycol) and poly(tetrahydrofuran). I. P-V-T relations and internal pressure,” Polym. J., vol. 5, no. 2, pp. 201–207, 1973
    [113] H. Wang et al., “A Composite Polymer Electrolyte Protect Layer between Lithium and Water Stable Ceramics for Aqueous Lithium-Air Batteries,” J. Electrochem. Soc., vol. 160, no. 4, pp. A728–A733, 2013
    [114] W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, and M. Armand, “Physical properties of solid polymer electrolyte PEO(LiTFSI) complexes,” J. Phys. Condens. Matter, vol. 7, no. 34, pp. 6823–6832, 1995
    [115] V. Lesch, Z. Li, D. Bedrov, O. Borodin, and A. Heuer, “The influence of cations on lithium ion coordination and transport in ionic liquid electrolytes: A MD simulation study,” Phys. Chem. Chem. Phys., vol. 18, no. 1, pp. 382–392, 2016

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE