簡易檢索 / 詳目顯示

研究生: 許凱嵐
Hsu, Kai-Lan
論文名稱: 聚氨酯與聚(苯乙烯-異丁烯-苯乙烯)複合膜製程應用於提升人工心臟球囊阻水性之研究
Preparation of polyurethane (PU) and poly (styrene-block-isobutylene-block-styrene) (SIBS) composite membrane to improve the moisture resistance of artificial heart sac
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 83
中文關鍵詞: 聚氨酯聚(苯乙烯-異丁烯-苯乙烯)人工心臟複合材料浸塗製程阻水性
外文關鍵詞: polyurethane, poly (styrene-block-isobutylene-block-styrene), artificial heart, composite membrane, dip-coating process, moisture resistance
相關次數: 點閱:64下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   人工心臟為心臟衰竭患者等待移植期間的重要橋樑,其可替代患者之心臟功能,延續患者生命,目前人工心臟之內球囊多使用聚氨酯(polyurethane, PU)作為血液接觸材料,然而,氣動式人工心臟其內球囊與外球囊間存在一氣室,利用該氣室的氣體壓力變化使內球囊收縮與舒張以推動血液循環,長期使用之下,血液中的水氣會因滲透壓差而擴散至氣室中,促使氣室間之濕度上升,一但濕度達到飽和則水氣將凝結成水珠,水珠的形成將造成人工心臟連接外接設備之線路短路進而導致儀器損壞或是產生積垢問題而滋生細菌,減少儀器壽命。
      聚(苯乙烯-異丁烯-苯乙烯)(poly (styrene-block-isobutylene-block-styrene), SIBS) 三嵌段聚合物為生物穩定之材料,具有不可滲透之特性。本實驗利用浸塗製程(dip-coating process)製備PU-SIBS-PU複合球囊,於聚氨酯層之間穿插聚(苯乙烯-異丁烯-苯乙烯)層,形成三明治結構以降低球囊之水器穿透速率。透過改變浸塗製程之參數(拉提速率、溶液濃度)以獲得無缺陷之SIBS層,透過電子顯微鏡(OM)、掃描式電子顯微鏡(SEM),觀察表面及截面型態;水氣穿透實驗與拉伸試驗量測材料之阻水性及機械性質;血液相容性實驗及細胞毒性實驗以評估此材料是否可作為血液接觸之材料。
    綜合各實驗結果,利用浸塗製程的參數變化成功製備出PU-SIBS-PU複合球囊,透過添加SIBS層於PU層之間,其結果顯示能夠有效減少37.6%的水氣穿透,並且具有良好的血液相容性及生物相容性。

    Artificial heart is a bridge for patients with heart failure waiting for transplantation. However, under long-term use, the water in the blood will diffuse into the air chambers due to the osmotic pressure difference, which will increase the humidity between the air chambers. Once the humidity reaches saturation, it will condense into droplets. The formation of water droplets will cause a short circuit between the artificial heart and external equipment, which will cause damage to the instrument or cause fouling problems, which will breed bacteria and reduce the life of the instrument. The formation of water droplets will cause damage to the external equipment connected to the artificial heart or cause fouling and bacteria, which will reduce the life of the instrument.
    Poly (styrene-block-isobutylene-block-styrene) (SIBS) is a biostable material with impermeable properties. In this study, PU-SIBS-PU composite sac was prepared by dip-coating process. SIBS layer was inserted between the polyurethane layers to form a sandwich structure to reduce the penetration rate of the sac.
    According to the results, we successfully fabricated PU-SIBS-PU sac through the dip coating process. By inserting the SIBS layer between the PU layers, the results show that it could effectively reduce the penetration of water vapor and had good blood compatibility and biocompatibility.

    中文摘要 I Extended Abstract II 誌謝 XV 目錄 XVI 表目錄 XX 圖目錄 XXI 第一章 緒論 1 第二章 文獻回顧 2 2-1 心臟(heart) 2 2-1-1 心臟(heart) 簡介 2 2-1-2 心血管疾病(Cardiovascular diseases, CVD) 3 2-2 人工心臟 (Artificial heart) 4 2-2-1 人工心臟發展 4 2-2-2 人工心臟之分類 7 2-3 人工心臟之材料 9 2-3-1 人工心臟球囊材料之訴求 9 2-3-2 聚氨酯(polyurethane, PU) 10 2-3-3 聚(苯乙烯—異丁烯—苯乙烯) (poly (styrene-block-isobutylene-block-styrene), SIBS) 12 2-4 浸塗製程(Dip-coating process) 16 2-4-1 浸塗製程之簡介 16 2-4-2 浸塗製程之參數 17 2-5血液相容性 19 2-5-1 血液的組成 19 2-5-2 血小板的組成 20 2-5-3 血小板的功能 22 2-5-4 凝血機制 24 2-5-5 血液相容性材料的表面特性 26 2-6 材料滲透理論 27 2-6-1 阻障膜 (Barrier film) 27 2-6-2 氣體或濕氣通過材料的滲透機制 27 2-6-3 滲透率,擴散和溶解度壓力之關係 29 2-6-4 滲透率,擴散和溶解度和溫度之關係 32 2-6-5 聚氨酯之水氣滲透性 33 第三章 實驗藥品與儀器介紹 34 3-1 實驗藥品 34 3-1-1 複合球囊之製備 34 3-1-2 血小板貼附實驗 34 3-1-3 血液相容性實驗 35 3-1-4細胞毒性測試 35 3-2 實驗設備與儀器 36 3-3 儀器原理與介紹 37 3-3-1 表面掃描雷射共焦位移測定儀(Surface Scanning Laser Confocal Displacement Meter) 37 3-3-2 衰弱式全反射-霍氏轉換紅外線光譜儀 (Attenuated total reflection-Fourier transform infrared spectroscopy, ATR-FTIR) 39 3-3-3 超高解析度冷場發射掃描式電子顯微鏡及能量散佈分析儀器 (Ultra-high Resolution Cold Field Scanning Electron Microscope & Energy Dispersive Spectrometer) 40 3-3-4 鍍金機(Auto fine coater) 41 3-3-5 機械性質試驗機 (Mechanical Testing System) 42 第四章 實驗步驟 44 4-1實驗流程圖 44 4-2 球囊之製備 45 4-2-1 PU-SIBS-PU複合球囊(PU-SIBS-PU sac)之製備 45 4-3 材料性質鑑定 46 4-3-1 SIBS層之吸附 46 4-3-2 SIBS層之膜厚及表面型態 46 4-3-3球囊(sac)之截面結構 46 4-3-4水氣穿透測試 47 4-3-5 機械強度測試 47 4-4 血液相容性與生物相容性 48 4-4-1 溶血實驗(Haemolysis Ratio (HR) Test) 48 4-4-2 動態凝血實驗(Blood Dynamic Clotting Test) 49 4-4-3 血小板貼附實驗 (In vitro platelet adhesion) 49 4-4-4 細胞毒性測試(Cytotoxicity) 52 第五章 結果與討論 54 5-1 SIBS層之吸附 54 5-1-1 ATR-FTIR 54 5-1-2 螢光顯微鏡 55 5-2 SIBS層之膜厚及表面型態 57 5-2-1 改變拉提速率 57 5-2-2改變溶液濃度 59 5-3 球囊(sac)之截面結構 61 5-4 血液相容性試驗 63 5-4-1 溶血實驗 63 5-4-2 動態凝血實驗 64 5-4-3 血小板貼附實驗 66 5-5 細胞毒性實驗 68 5-6水氣穿透測試 70 5-7 機械性值測試 72 第六章 結論 74 參考文獻 75

    1. Wilson, S.R., et al., Ventricular assist devices: the challenges of outpatient management. Journal of the American College of Cardiology, 2009. 54(18): p. 1647-1659.
    2. Gibbon Jr, J.H. and J.D. Hill, Part I. The Development of the First Successful Heart-Lung Machine. The Annals of Thoracic Surgery, 1982. 34(3): p. 337-341.
    3. Khan, S. and W. Jehangir, Evolution of artificial hearts: an overview and history. Cardiology research, 2014. 5(5): p. 121.
    4. Frazier, O., In Memoriam: Tetsuzo Akutsu 1922–2007. Texas Heart Institute Journal, 2008. 35(1): p. 4.
    5. Gaitan, B.D., et al., Development, current status, and anesthetic management of the implanted artificial heart. Journal of cardiothoracic and vascular anesthesia, 2011. 25(6): p. 1179-1192.
    6. Cooley, D.A., The total artificial heart. Nature medicine, 2003. 9(1): p. 108-111.
    7. Levinson, M.M., et al., Thromboembolic complications of the Jarvik‐7 total artificial heart: Case report. Artificial organs, 1986. 10(3): p. 236-244.
    8. Belanger, M.C., et al., Selection of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart: Blood compatibility and biocompatibility studies. Artificial Organs, 2000. 24(11): p. 879-888.
    9. Lyman, D.J., et al., The development and implantation of a polyurethane hemispherical artificial heart. ASAIO Journal, 1971. 17(1): p. 456-463.
    10. Boretos, J.W. and W.S. Pierce, Segmented polyurethane: a new elastomer for biomedical applications. Science, 1967. 158(3807): p. 1481-1482.
    11. Stokes, K.B., Polyether polyurethanes: biostable or not? Journal of biomaterials applications, 1988. 3(2): p. 228-259.
    12. Stokes, K., P. Urbanski, and J. Upton, The in vivo auto-oxidation of polyether polyurethane by metal ions. Journal of Biomaterials Science, Polymer Edition, 1989. 1(3): p. 207-230.
    13. Reed, A.M., J. Potter, and M. Szycher, A solution grade biostable polyurethane elastomer: ChronoFlex® AR. Journal of Biomaterials applications, 1994. 8(3): p. 210-236.
    14. Edwards, A., et al., Development of a microporous compliant small bore vascular graft. Journal of Biomaterials applications, 1995. 10(2): p. 171-187.
    15. Capone, C.D., Biostability of a non-ether polyurethane. Journal of Biomaterials applications, 1992. 7(2): p. 108-129.
    16. Mathur, A.B., et al., In vivo biocompatibility and biostability of modified polyurethanes. Journal of Biomedical materials research, 1997. 36(2): p. 246-257.
    17. Lin, Y.Y., K.-C. Hung, and S.-H. Hsu, Stability of biodegradable waterborne polyurethane films in buffered saline solutions. Biointerphases, 2015. 10(3): p. 031006.
    18. Cooper, S.L. and J. Guan, Advances in polyurethane biomaterials. 2016: Woodhead Publishing.
    19. Lamba, N.M., K.A. Woodhouse, and S.L. Cooper, Polyurethanes in biomedical applications. 1997: CRC press.
    20. Grad, S., et al., The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations. Biomaterials, 2003. 24(28): p. 5163-5171.
    21. Williamson, M.R., R. Black, and C. Kielty, PCL–PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials, 2006. 27(19): p. 3608-3616.
    22. Shirota, T., et al., Human endothelial progenitor cell-seeded hybrid graft: proliferative and antithrombogenic potentials in vitro and fabrication processing. Tissue engineering, 2003. 9(1): p. 127-136.
    23. Gupta, K.M., et al., Polyurethane intravaginal ring for controlled delivery of dapivirine, a nonnucleoside reverse transcriptase inhibitor of HIV-1. Journal of pharmaceutical sciences, 2008. 97(10): p. 4228-4239.
    24. Mattu, C., et al., Comparative evaluation of novel biodegradable nanoparticles for the drug targeting to breast cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 2013. 85(3): p. 463-472.
    25. Zhou, L., et al., Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 2011. 44(4): p. 857-864.
    26. Zdrahala, R.J. and I.J. Zdrahala, Biomedical applications of polyurethanes: a review of past promises, present realities, and a vibrant future. Journal of Biomaterials applications, 1999. 14(1): p. 67-90.
    27. Akutsu, T., C.S. Houston, and W.J. Kolff, Roller type of artificial heart within the chest: preliminary report. American heart journal, 1960. 59(5): p. 731-736.
    28. Smadja, D.M., et al., The carmat bioprosthetic total artificial heart is associated with early hemostatic recovery and no acquired von Willebrand syndrome in calves. Journal of cardiothoracic and vascular anesthesia, 2017. 31(5): p. 1595-1602.
    29. Frazier, O., et al., The total artificial heart: where we stand. Cardiology, 2004. 101(1-3): p. 117-121.
    30. Pinchuk, L., et al., Medical applications of poly (styrene-block-isobutylene-block-styrene)(“SIBS”). Biomaterials, 2008. 29(4): p. 448-460.
    31. Vondráček, P. and B. Doležel, Biostability of medical elastomers: a review. Biomaterials, 1984. 5(4): p. 209-214.
    32. Pinchuk, L., A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of'biostable'polyurethanes. Journal of Biomaterials Science, Polymer Edition, 1995. 6(3): p. 225-267.
    33. Wu, Y., et al., An FTIR–ATR investigation of in vivo poly (ether urethane) degradation. Journal of applied polymer science, 1992. 46(2): p. 201-211.
    34. Anderson, J., et al., Cell/polymer interactions in the biodegradation of polyurethanes. SPECIAL PUBLICATION-ROYAL SOCIETY OF CHEMISTRY, 1992. 109(1): p. 122-122.
    35. Jasty, M., et al., Wear of polyethylene acetabular components in total hip arthroplasty. An analysis of one hundred and twenty-eight components retrieved at autopsy or revision operations. JBJS, 1997. 79(3): p. 349-58.
    36. Kurtz, S.M., The UHMWPE handbook: ultra-high molecular weight polyethylene in total joint replacement. 2004: Elsevier.
    37. Apple, D.J., et al., Biocompatibility of implant materials: a review and scanning electron microscopic study. American Intra-Ocular Implant Society Journal, 1984. 10(1): p. 53-66.
    38. Goldberg, E., et al. Biocompatibility of intraocular lens polymers. in Proceedings of the 11th annual meeting of the society for biomaterials. San Diego, CA: University of Alabama, Birmingham. 1985.
    39. Deacon, J. and D. Apple. Further studies of IOL materials. in Proceedings of the 11th annual meeting of the society for biomaterials. San Diego, CA: University of Alabama, Birmingham. 1985.
    40. Kennedy, J.P., From thermoplastic elastomers to designed biomaterials. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(14): p. 2951-2963.
    41. Pinchuk, L., et al. A new family of thermoplastic elastomers for ultra-long term implant based upon a backbone of alternating quaternary and secondary carbons. in 24 th Annual Meeting of the Society for Biomaterials. 1998.
    42. Pinchuk, L., et al. Polyisobutylene-based thermoplastic elastomers for ultra long-term implant applications. in Sixth World Biomaterials Congress. 2000.
    43. Steckel, M., et al., In vivo biostability of SIBS controlled release polymer in TAXUS drug eluting coronary stents. Transactions of biomaterials in regenerative medicine: the advent of combination products, October, 2004: p. 16-18.
    44. Kamath, K.R., J.J. Barry, and K.M. Miller, The Taxus™ drug-eluting stent: A new paradigm in controlled drug delivery. Advanced drug delivery reviews, 2006. 58(3): p. 412-436.
    45. Pinchuk, L., et al., Drug delivery compositions and medical devices containing block copolymer. 2003, Google Patents.
    46. Richard, R., et al., Polymer technology for the controlled release of paclitaxel from a vascular compatible matrix: the TaxusTM Express paclitaxel-eluting coronary stent. Biomaterials in Regenerative Medicine: The Advent of Combination Products, 2004.
    47. Schoephoerster, R.T., et al., A novel trileaflet synthetic heart valve. ASME-PUBLICATIONS-BED, 2001. 51: p. 225-226.
    48. Yin, W., et al., Flow‐induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artificial Organs, 2005. 29(10): p. 826-831.
    49. Gallocher, S.L., et al., A novel polymer for potential use in a trileaflet heart valve. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials, 2006. 79(2): p. 325-334.
    50. Ovcharenko, E., et al., Polyisobutylene-Based Thermoplastic Elastomers for Manufacturing Polymeric Heart Valve Leaflets: In Vitro and In Vivo Results. Applied Sciences-Basel, 2019. 9(22).
    51. Pinchuk, L., et al., The use of poly(styrene-block-isobutylene-block-styrene) as a microshunt to treat glaucoma. Regenerative Biomaterials, 2016. 3(2): p. 137-142.
    52. Sadruddin, O., et al., Ab externo implantation of the MicroShunt, a poly (styrene-block-isobutylene-block-styrene) surgical device for the treatment of primary open-angle glaucoma: a review. Eye and Vision, 2019. 6(1).
    53. Pinchuk, L., et al., The development of a micro-shunt made from poly(styrene-block-isobutylene-block-styrene) to treat glaucoma. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2017. 105(1): p. 211-221.
    54. Naficy, S., et al., Evaluation of encapsulating coatings on the performance of polypyrrole actuators. Smart materials and structures, 2013. 22(7): p. 075005.
    55. Rinne, P., et al., Encapsulation of ionic electromechanically active polymer actuators. Smart Materials and Structures, 2019. 28(7).
    56. Takalloo, S.E., et al., Impermeable and Compliant: SIBS as a Promising Encapsulant for Ionically Electroactive Devices. Robotics, 2019. 8(3).
    57. Scriven, L., Physics and applications of dip coating and spin coating. MRS Online Proceedings Library Archive, 1988. 121.
    58. Heimann, R.B. and H.D. Lehmann, Bioceramic coatings for medical implants: trends and techniques. 2015: John Wiley & Sons.
    59. Riau, A.K., et al., Functionalization of the polymeric surface with bioceramic nanoparticles via a novel, nonthermal dip coating method. ACS applied materials & interfaces, 2016. 8(51): p. 35565-35577.
    60. Himma, N.F., A.K. Wardani, and I.G. Wenten, Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polymer-Plastics Technology and Engineering, 2017. 56(2): p. 184-194.
    61. Arfsten, N., et al., Investigations on the angle-dependent dip coating technique (ADDC) for the production of optical filters. Journal of Sol-Gel Science and Technology, 1997. 8(1-3): p. 1099-1104.
    62. 何敏夫, 血液學. 1994: 合記圖書出版社.
    63. Dewald, O., et al., Platelet morphology in patients with mechanical circulatory support. European Journal of Cardio-Thoracic Surgery, 1997. 12(4): p. 634-641.
    64. Tan, A., et al., An anti-CD34 antibody-functionalized clinical-grade POSS-PCU nanocomposite polymer for cardiovascular stent coating applications: a preliminary assessment of endothelial progenitor cell capture and hemocompatibility. PLoS One, 2013. 8(10): p. e77112.
    65. Roghani, K., R.J. Holtby, and J.S. Jahr, Effects of hemoglobin-based oxygen carriers on blood coagulation. J Funct Biomater, 2014. 5(4): p. 288-95.
    66. Cheng, C., S. Sun, and C. Zhao, Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. J. Mater. Chem. B, 2014. 2(44): p. 7649-7672.
    67. Han, D.K., et al., Preparation and surface characterization of PEO-grafted and heparin-immobilized polyurethanes. J. Biomed. Mater. Res.: Applied Biomaterials, 1989. 23: p. 87-104.
    68. Begovac, P.C., et al., Improvements in GORE-TEX® vascular graft performance by Carmeda® bioactive surface heparin immobilization. European Journal of Vascular and Endovascular Surgery, 2003. 25(5): p. 432-437.
    69. Okano, T., et al., Effect of hydrophilic and hydrophobic microdomains on mode of interaction between block polymer and blood platelets. Journal of Biomedical Materials Research, 1981. 15: p. 393-402.
    70. Ito, E., et al., Active platelet movements on hydrophobic/hydrophilic microdomain-structured surfaces. J Biomed Mater Res,, 1998. 42: p. 148-155.
    71. Roh, H.W., et al., Effect of cross-link density and hydrophilicity of PU on blood compatibility of hydrophobic PS/hydrophilic PU IPNs. Journal of Biomaterials Science, Polymer Edition, 1999. 10(1): p. 123-143.
    72. Nie, S., et al., Blood activation and compatibility on single-molecular-layer biointerfaces. Journal of Materials Chemistry B, 2014. 2(30): p. 4911-4921.
    73. Zhang, S., et al., Fast and facile fabrication of antifouling and hemocompatible PVDF membrane tethered with amino-acid modified PEG film. Applied Surface Science, 2018. 428: p. 41-53.
    74. Koguchi, R., et al., Controlling the hydration structure with a small amount of fluorine to produce blood compatible fluorinated poly (2-methoxyethyl acrylate). Biomacromolecules, 2019. 20(6): p. 2265-2275.
    75. 林永信, 氟化聚胺酯生醫材料製備與其血液相容性之研究, in 化學工程學研究所. 2007, 國立臺灣大學. p. 1-89.
    76. McKeen, L.W., Permeability properties of plastics and elastomers. 2016: William Andrew.
    77. Logothetidis, S., Handbook of flexible organic electronics: Materials, manufacturing and applications. 2014: Elsevier.
    78. Yang, M., et al., Totally implantable artificial hearts and left ventricular assist devices: selecting impermeable polycarbonate urethane to manufacture ventricles. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 1999. 48(1): p. 13-23.
    79. Chang, W.T., et al., An optical-based method and system for the web thickness measurement of microdrills considering runout compensation. International Journal of Precision Engineering and Manufacturing, 2013. 14(5): p. 725-734.
    80. Zhou, C. and Z. Yi, Blood-compatibility of polyurethane/liquid crystal composite membranes. Biomaterials, 1999. 20(22): p. 2093-2099.
    81. Yang, M.J., et al., Totally implantable artificial hearts and left ventricular assist devices: Selecting impermeable polycarbonate urethane to manufacture ventricles. Journal of Biomedical Materials Research, 1999. 48(1): p. 13-23.
    82. Ferreira, P., J. Coelho, and M. Gil, Development of a new photocrosslinkable biodegradable bioadhesive. International journal of pharmaceutics, 2008. 352(1-2): p. 172-181.

    無法下載圖示 校內:2025-07-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE